तार : विश्वविद्यालय Gram : UNIVERSITY

टेलीफोन : कार्या० : 2320496 कुलसचिव : निवास : 2321214 फेक्स : 0510 : 2321667

बुन्देलखण्ड विश्वविद्यालय, झॉंसी BUNDELKHAND UNIVERSITY, JHANSI

संदर्भ. FT/IET/2022/148

झाँसी (उ.प्र.) 284128

दिनाँक. 03/12/2022

The Minutes of Meeting of BOS

Bundelichand University HANS

(Dr. Ravi Kumar) HOD/Coordinator

Minutes of Meeting of Board of Studies Academic Session (2020-21)

A meeting of Board of Studies was held on 16/12/2020 to discuss various issues related with the course running in Department of Food Engineering & Technology and to update the panel of examiners for session 2020-21.

The following members were present:

- 1. Prof. S. K. Katiyar, Convener and Director/Dean Engineering
- 2. Er. Brajendra Shukla, Academic Coordinator, I.E.T., B.U., Jhansi
- 3. Er. Ravi Kumar, Coordinator, Dept. of Food Engg. & Tech., B.U., Jhansi
- 4. Dr. Shubhangi Nigam, Dept. of Food Engg. & Tech, B.U., Jhansi

AGENDA

- 1. To update the list of External and Internal Examiners of B. Tech (1st, 2nd, 3rd and 4th year) of B. Tech (Food Tech./Food Engg. & Tech.) for the session 2020-21.
- 2. Amendment in intake criteria for admission to second year through lateral entry scheme
- 3. Inclusion of D. Voc. Stream in eligibility criteria for admission to second year through lateral entry scheme

PROCEEDINGS:

1. To update the list of External and Internal Examiners for session 2020-21 examination.

The updated panel of external and internal examiners for even and odd semester examinations (theory and practical) has been proposed for session 2020-2021.

2. Amendment in intake criteria for admission to second year through lateral entry scheme

As per the discussion among all members of B.O.S. and in view of AICTE guidelines it was proposed that Lateral entry to the second year of the B. Tech. (Food Engg. & Technology) programme shall be permissible up to a maximum of 10% of the "Approved Intake" which shall be over and above, supernumerary to the "Approved Intake" plus the unfilled vacancies of the first year.

3. Inclusion of D. Voc. Stream in eligibility criteria for admission to second year through lateral entry scheme

In view of the latest guidelines of AICTE and as per the discussion among all members of B.O.S. the modified eligibility criteria for admission to second year through lateral entry scheme including D. Voc. was proposed as under:

(A) Candidates who have passed 3/4 year Diploma with at least 50% marks (45% in case of candidates belonging to reserved category) in any branch of Engineering/Technology.

(B) Candidates who have passed B.Sc. Degree from a recognized University as defined by UGC, with at least 50% marks (45% in case of candidates belonging to reserved category).

(C) Provided that the students belonging to B.Sc. Stream, shall clear the subjects Engineering Graphics/ Engineering Drawing and Engineering Mechanics of the First

& Awille

Year Engineering Programme along with the Second year subjects.

(D) Provided that the students belonging to B.Sc. Stream shall be considered only after filling the supernumerary seats in this category with students belonging to the Diploma stream.

(E) Passed D. Voc. Stream in the same or allied sector.

The B.O.S. also recommended to modify the intake criteria (as mentioned in point no. 2) and eligibility criteria by including B.Sc. and D. Voc. Along with diploma candidate (as mentioned in point no. 3) above for all the other branches of Institute of Engineering & Technology, Bundelkhand University, Jhansi.

(Er. Ravi Kumar) Internal Member

Klei

(Er. Brajendra Shukla) Academic Coordinator

(Dr. Shubhangi Nigam) Internal Member

(Prof. S. K. Katiyar) Convener/ Dean Engg.

VALUET BRATHE

TRAINING & PLACEMENT SELL

CURRICULUM & SYLLABUS UNDER CHOICE BASED CREDIT SYSTEM

DEPARTMENT OF FOOD TECHNOLOGY INSTITUTE OF ENGINEERING & TECHNOLOGY

CURRICULUM & SYLLABUS

FOR

B. TECH. FOOD ENGINEERING & TECHNOLOGY

BUNDELKHAND UNIVERSITY KANPUR ROAD, JHANSI UTTAR PRADESH-284128

www.bujhansi.ac.in

CHAPTER 1

VISION, MISSION, PROGRAM OUTCOMES, PROGRAM EDUCATIONAL OBJECTIVES, PROGRAM SPECIFIC OUTCOMES

Undergraduate Degree in Engineering & Technology

Program B. TECH. (FOOD ENGINEERING & TECHNOLOGY)

Offered by

Department of Food Technology Institute of Engineering & Technology Bundelkhand University, Jhansi

Department of Food Technology Curriculum for Undergraduate Degree Course in Engineering & Technology

B. TECH. (FOOD ENGINEERING & TECHNOLOGY)

Chapter-1 Vision, Mission, Program Outcomes, Program Educational Objectives, Program Specific Outcomes

INSTITUTE OF ENGINEERING & TECHNOLOGY, B. U., JHANSI

I. Vision of Institute

To emerge as an institution of excellence in engineering education and research that emphasizes on the human values, competence and professionalism integrated with the course curriculum as perglobal standards to serve the nation as well as the society with innovating mindset to take up anychallenge they come across in industrial, scientific or academic fields within or outside the country.

II. Mission of Institute

M1	To equip with the latest tools and equipment matching the state-of-art technologies to
	facilitate the academic and research activities at par with the best institutions.
M2	To inculcate a proper mix of creativity, innovation, competence, entrepreneurial leadership,
	and professionalism in the minds of the students so as to yield the internationally accepted
	best products.
M3	To provide proper ambience for the teaching-learning system that preserves universal human
	values, ethics and morals to meet the aspirations of all the stakeholders for sustainable
	development of the institute.
M4	To develop a potential pool of intellectuals and professionals that can serve anywhere
	efficiently in decision making and policy adoption according to the local, national and global
	needs

DEPARTMENT OF FOOD TECHNOLOGY

I. Vision of Department

To emerge as a center of excellence for producing competent professionals with human values and innovating and humanistic mindset, in food and agriculture engineering along with allied areas in science and technology as per global standards to cater the needs of the food industry, R&D and academic institutions within or outside the country with the capability to take up any challenge they come across in their profession.

II. Mission of Department

M1	To equip with the latest tools and equipment matching the state-of-art technologies to facilitate
	the academic and research activities at par with the best institutions in the field of food
	engineering, technology and related areas.
M2	To inculcate proper mix of creativity, innovation, competence, entrepreneurial skill,
	leadership and professionalism in the minds of the students so as to yield the internationally
	accepted best professionals for food, agriculture and allied sectors.
M3	To provide proper ambience for the teaching-learning system that preserves universal human
	values, ethics and morals to meet the aspirations of all the stakeholders for sustainable
	development of the food, agriculture and allied sectors.
M4	To develop a potential pool of intellectuals and qualified professionals that can serve
	anywhere efficiently and contribute to the growth of the national economy through boosting
	qualitatively and quantitatively enhanced food production.

III. <u>Program Outcomes (POs) of B. Tech. (Food Engineering & Technology)</u>

Graduating Students of B. Tech. (Food Engg. & Technology) program will be able to:

Progra	am Outcomes (POs)	Graduate Attributes(GAs)
PO1	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Engineering Knowledge
PO2	Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Problem Analysis
PO3	Design solutions for complex engineering problems and system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Design/Development of solutions
PO4	Use research-based knowledge and research methodsincluding design of experiments, analysis and interpretation of data, and synthesis of the information of provide valid conclusions.	Conduct Investigations of complex problems
PO5	Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of thelimitations.	Modern Tool Usage

PO6	Apply reasoning informed by the contextual knowledgeto assess societal, health, safety, legal and cultural	The Engineer & Society
	professional engineering practice.	
PO7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable	Environment andsustainability
PO8	development. Apply ethical principles and commit to professional	Fthics
	ethics and responsibilities and norms of the engineering practice.	
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinarysettings.	Individual and team work
PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend andwrite effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Communication
PO11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Project management and finance
PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Life-long learning

IV. Program Educational objectives (PEOs) for B. Tech. (Food Engineering & Technology)

The educational objectives of B. Tech. Food Engineering & Technology program are:

PEO1	Graduate will have successful professional careers in the field of Food Engg. & Technology with
	innovative ideas while serving the Government firm, industry, corporate, academic and research
	organization or being an entrepreneur.
PEO2	Graduate will be able to work effectively in different fields as a team member or individual with the
	ability of solving engineering problems with core expertise in analysis, design and development using
	advanced tools in food engineering and technology.
PEO3	Graduate will be able to show the leadership in diverse cultures, nationalities and fields while working
	efficiently with interdisciplinary teams locally and internationally to meet global challenges in the field
	of Food Engg. & Technology.
PEO4	Graduate will be able to develop themselves professionally by continuous and lifelong learning and
	advance their careers through activities such as participation in professional certification programs,

and seeking higher education innovation and research while benefitting the society.

V. Program specific outcomes (PSOs) for B. Tech. Food Engineering & Technology programare:

Graduating students of B. Tech. Food Engineering & Technology program will be able:

PSO1	to implement technical knowledge practically in the field of processing, designing, manufacturing specifically in engineering & technology part of food industries
PSO2	to place themselves in the research and development field as well as pursue higher studies in food technology and interdisciplinary programs

CHAPTER 2

GENERAL, COURSE STRUCTURE, THEME & SEMESTER WISE CREDIT DISTRIBUTION

Undergraduate Degree in Engineering & Technology

Program B. TECH. (FOOD ENGINEERING & TECHNOLOGY)

Offered by

Department of Food Technology Institute of Engineering & Technology Bundelkhand University, Jhansi

Department of Food Technology Curriculum for Undergraduate Degree Course in Engineering & Technology

B. TECH. (FOOD ENGINEERING & TECHNOLOGY)

Chapter-2 General, Course structure & Theme & Semester-wise credit distribution

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits
2 Hours Practical(Lab)/week	1 credit

B. Total number of credits - 160

C. Structure of the program:

S.	Category	Breakup of
No.		Credits
1	Humanities and Social Sciences including Management courses	6
2	Basic Science courses	18
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc	37
4	Professional Core courses	82
5	Professional Elective courses	4
6	Open subjects – Electives from other technical and /or emerging subjects	2
7	Project work, seminar and internship in industry or elsewhere	11
8	Mandatory Courses	
	[Environmental Sciences, Induction Program etc.]	(non-credit)
	Total	160*

D. Credit distribution in the First year of Undergraduate Engineering program:

	Lecture	Tutorial	Laboratory	Total
			/Practical	credits
Elementary Mathematics/Elementary Biology	2	1	0	3
Engineering Physics - I	2	0	0	2
Engineering Mechanics	3	0	0	3
Computer Concepts and Programming in C	2	1	0	3
Professional Communication	3	0	0	3
Engineering Mechanics Lab	0	0	2	1
Computer Programming Lab	0	0	2	1
Computer Aided Engineering Graphics	0	0	2	1
Professional Communication Lab	0	0	2	1
Engineering Mathematics - I	2	1	0	3
Engineering Physics - II	2	0	0	2
Engineering Chemistry	3	0	0	3
Electrical Engineering	2	1	0	3
Electronics Engineering	3	0	0	3
Manufacturing Processes	2	0	0	2
Engineering Chemistry Lab	0	0	2	1
Electrical Engineering Lab	0	0	2	1
Workshop Practice	0	0	2	1
Physics Lab	0	0	2	1

E. Course code and definition:

Course code	Definitions
BS	Basic Science courses
HSM	Humanities, Social Sciences including Management
ES	Engineering Science course
PC	Professional Core Courses
PE	Professional Elective Courses
OE	Open Elective Course
М	Mandatory Course
SI	Summer Internship
S	Seminar
Proj	Project

BASIC SCIENCES COURSE [BS]

Sl. No	Code No.	Subject	Semester	Credits
1	BSMA-1842/ BSBL-1852	Elementary Mathematics/ Elementary Biology	1	3

			Total Credits:	18
7	BSMA-2481	Engineering Mathematics-II	3	4
6	ESPH-10873	Physics Lab	2	1
5	BSCY-1858	Engineering Chemistry	2	3
4	BSPH-1857	Engineering Physics - II	2	2
3	BSMA-1855	Engineering Mathematics - I	2	3
2	BSPH-1843	Engineering Physics - I	1	2

ENGINEERING SCIENCE COURSES [ES]

Sl.	Code No.	Subject	Semester	Credits
No				
1	ESME-1845	Engineering Mechanics	1	3
2	ESCS-1847	Computer Concepts and Programming in C	1	3
3	ESME-10854	Engineering Mechanics Lab	1	1
4	ESCS-10856	Computer Programming Lab	1	1
5	ESME-10858	Computer Aided Engineering Graphics Lab	1	1
6	ESEC-1860	Electrical Engineering	2	3
7	ESEC-1862	Electronics Engineering	2	3
8	ESME-1864	Manufacturing Processes	2	2
9	ESCY-10867	Engineering Chemistry Lab	2	1
10	ESEE-10869	Electrical Engineering Lab	2	1
11	ESWS-10871	Workshop Practice	2	1
12	ESCH-2482	Instrumentation and Process Control	3	2
13	ESCS-2846	Cyber Security	3	2
14	ESMA-2491	Numerical Methods and Computer Programming	4	2
15	ESCH-2492	Process Calculations	4	3
16	ESCH-2493	Chemical Engineering Thermodynamics	4	2
17	ESMA-20497	NMCP Lab.	4	1
18	ESME-3489	Machine Design	6	3
19	ESCH-4490	Industrial Safety and Hazard Management	8	2
			Total Credits:	37

HUMANITIES AND SOCIAL SCIENCES INCLUDING MANAGEMENT COURSES [HSM]

Sl.	Code No.	Subject	Semester	Credits
No				
1	HSMHU-1849	Professional Communication	1	3
2	HSMHU-10860	Professional Communication Lab	1	1
3	HSMHU-3481	Industrial Economics and Principles of	5	2
		Management		
			Total Credits:	6

PROFESSIONAL CORE COURSES [PC]

Sl.	Code No.	Subject	Semester	Credits
No				
1	PCFET-2483	Food Composition & Human Nutrition	3	3
2	PCFET-2484	Basic and Food Microbiology	3	3
3	PCFET-2845	Engineering Properties of Foods	3	3
4	PCFET-20487	Food Composition & Human Nutrition Lab	3	2
5	PCFET-20488	Basic and Food Microbiology Lab.	3	2
6	PCFET-2494	Food Chemistry	4	3
7	PCFET-2495	Food Additives	4	3
8	PCFET-2496	Food Engineering-I	4	3
9	PCFET-20498	Food Chemistry Lab	4	3
10	PCFET-20499	Food Engineering-I Lab	4	1
11	PCFET-3482	Food Biochemistry and Biotechnology	5	3
12	PCFET-3483	Food Analysis	5	3
13	PCFET-3484	Traditional and Fermented Foods	5	3
14	PCFET-3485	Food Safety and Food Laws	5	2
15	PCFET-3486	Food Engineering-II	5	3
16	PCFET-30487	Food Biochemistry and Biotechnology Lab	5	2
17	PCFET-30488	Food Analysis Lab	5	2
18	PCFET-34089	Food EnggII Lab.	5	1
19	PCFET-3486	Dairy Technology	6	2
20	PCFET-3487	Flavour Technology	6	2
21	PCFET-3488	Food Preservation and Processing Principles	6	3
22	PCFET-3490	Cereals, Pulses and Oil Seed Products	6	3
23	PCFET-3491	Food Engineering-III	6	3
24	PCFET-30492	Food Engineering-III Lab	6	1
25	PCFET-30493	Food Preservation and Processing Principles Lab.	6	3
26	PCFET-4481	Fruits, Vegetables and Plantation Products	7	3
27	PCFET-4482	Food Quality	7	3
28	PCFET-4485	Bakery and Confectionary Technology	7	3
29	PCFET-40486	Food Quality Evaluation Lab.	7	2
30	PCFET-4487	Meat, Fish & Poultry Products Technology	8	3
31	PCFET-4488	Food Plant Layout and Design	8	3
32	PCFET-4489	Food Packaging	8	3
		·1	Total Credits:	82

PROFESSIONAL ELECTIVE COURSES [PE]

Sl. No	Code No.	Subject	Semester	Credits
1	PEFET	Departmental Elective – I	7	2
2	PEFET	Departmental Elective-II	8	2
			Total Credits:	4

OPEN ELECTIVE COURSES [OE]

Sl.	Code No.	Subject	Semester	Credits
No				
1	OE	Open Elective Course (Course from other	7	2
		technical and /or emerging Subjects)		
2	OEFET	Nutritional Aspects of Natural & Processed	7	3
		Foods (Except Food Engg. & Technology		
		Students)		

SEMINAR [S], SUMMER INDUSTRY INTERNSHIP [SI], & PROJECT [Proj.]

Sl.	Code No.	Subject	Semester	Credits
No				
1	SFET-30495	Seminar	6	1
2	SIFET-40488	Industrial Training	7	1
3	Proj.FET-40487	Project	7	3
4	Proj.FET-40491	Project	8	6
			Total Credits:	11

CHAPTER 3

STUDY & EVALUATION SCHEME

Undergraduate Degree in Engineering & Technology

Program B. TECH. (FOOD ENGINEERING & TECHNOLOGY)

Offered by

Department of Food Technology Institute of Engineering & Technology Bundelkhand University, Jhansi

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) FIRST YEAR, FIRST SEMESTER

[Effective from the Session 2022-23]

S.N.	Category	Course	Course Title	Periods			Ε	valuat	ion Sche	eme	Total	Credits
		Code		(Hour	rs per v	week)	Sessi	ional E	xam.	ESE		
				L	Т	Р	СТ	ТА	Total			
THEO	RY											
1	Basic Science	BSMA-1842/ BSBL-1852	Elementary Mathematics/ Elementary Biology	2	1	0	30	20	50	100	150	3
2	Basic Science	BSPH-1843	Engineering Physics - I	2	0	0	15	10	25	50	75	2
3	Engg. Science	ESME-1845	Engineering Mechanics	3	0	0	30	20	50	100	150	3
4	Engg. Science	ESCS-1847	Computer Concepts and Programming in C	2	1	0	30	20	50	100	150	3
5	Humanities, Social Sciences including Management	HSMHU-1849	Professional Communication	3	0	0	30	20	50	100	150	3
6	Mandatory non-credit course	MEV-1851	Environment and Ecology (Non Credit)	2	0	0	10	10	20	30	50	-
PRAC	TICALS	•		•						•		
1	Engg. Science	ESME-10854	Engineering Mechanics Lab	0	0	2			25	50	75	1
2	Engg. Science	ESCS-10856	Computer Programming Lab	0	0	2			25	50	75	1
3	Engg. Science	ESME-10858	Computer Aided Engineering Graphics	0	0	2			25	50	75	1
4	Humanities, Social Sciences including Management	HSMHU- 10860	Professional Communication Lab	0	0	2			25	50	75	1
5		GP-10861	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	14	2	8					975	18

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) FIRST YEAR, SECOND SEMESTER

[Effective from the Session 2022-23]

S.N.	Course Category	Course	Course Title	Periods		Evalua	ation S	cheme		Total	Credits	
		Code		(Hou	rs per	week)	Sessio	nal Exa	am.	ESE		
				L	Т	Р	СТ	TA	Total			
THEC	DRY	•			·			•	•	•		•
1	Basic Science	BSMA-1855	Engineering Mathematics - I	2	1	0	30	20	50	100	150	3
2	Basic Science	BSPH-1857	Engineering Physics - II	2	0	0	15	10	25	50	75	2
3	Basic Science	BSCY-1858	Engineering Chemistry	3	0	0	30	20	50	100	150	3
4	Engg. Science	ESEC-1860	Electrical Engineering	3	0	0	30	20	50	100	150	3
5	Engg. Science	ESEC-1862	Electronics Engineering	3	0	0	30	20	50	100	150	3
6	Engg. Science	ESME-1864	Manufacturing Processes	2	0	0	10	10	20	30	50	2
PRAC	CTICALS	•			·			•	•	•		•
1	Engg. Science	ESCY-10867	Engineering Chemistry Lab	0	0	2			25	50	75	1
2	Engg. Science	ESEE-10869	Electrical Engineering Lab	0	0	2			25	50	75	1
3	Engg. Science	ESWS-10871	Workshop Practice	0	0	2			25	50	75	1
4	Basic Science	ESPH-10873	Physics Lab	0	0	2			25	50	75	1
5		GP-10875	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	15	1	8					1025	20

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) SECOND YEAR, THIRD SEMESTER

[Effective from the Session 2022-23]

S.N.	Category	Course	Course Title]	Periods		E	valuat	ion Sch	eme	Total	Credits
		Code		(Hou	rs per	week)	Sessional Exam.			ESE		
				L	Т	Р	СТ	ТА	Total			
THEC	DRY	•		•					•			
1	Basic Science	BSMA-2481	Engineering Mathematics-II	3	1	0	30	20	50	100	150	4
2	Engg. Science	ESCH-2482	Instrumentation and Process Control	2	0	0	15	10	25	50	75	2
3	Professional Core	PCFET-2483	Food Composition & Human Nutrition	3	0	0	30	20	50	100	150	3
4	Professional Core	PCFET-2484	Basic and Food Microbiology	3	0	0	30	20	50	100	150	3
5	Professional Core	PCFET-2845	Engineering Properties of Foods	3	0	0	30	20	50	100	150	3
6	Engg. Science	ESCS-2846	Cyber Security	2	0	0	15	10	25	50	75	2
PRAC	TICALS	•										•
1	Professional Core	PCFET-20487	Food Composition & Human Nutrition Lab	0	0	4	30	20	50	100	150	2
2	Professional Core	PCFET-20488	Basic and Food Microbiology Lab.	0	0	4	20	20	40	60	100	2
3		GP-20489	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	16	1	8					1000	21

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) SECOND YEAR, FOURTH SEMESTER

[Effective from the Session 2022-23]

S.N.	Category	Course	Course Title	Periods		E	valuat	ion Sch	eme	Total	Credits	
		Code		(Hou	rs per v	week)	Sess	ional E	xam.	ESE		
				L	Т	Р	СТ	ТА	Total			
THEC	DRY									-		
1	Engg. Science	ESMA-2491	Numerical Methods and Computer Programming	2	0	0	15	10	25	50	75	2
2	Engg. Science	ESCH-2492	Process Calculations	2	1	0	30	20	50	100	150	3
3	Engg. Science	ESCH-2493	Chemical Engineering Thermodynamics	2	0	0	15	10	25	50	75	2
4	Professional Core	PCFET-2494	Food Chemistry	3	0	0	30	20	50	100	150	3
5	Professional Core	PCFET-2495	Food Additives	3	0	0	30	20	50	100	150	3
6	Professional Core	PCFET-2496	Food Engineering-I	3	0	0	30	20	50	100	150	3
PRAC	CTICALS									-		
1	Engg. Science	ESMA-20497	Numerical Methods and Computer Programming Lab.	0	0	2	10	10	20	30	50	1
2	Professional Core	PCFET-20498	Food Chemistry Lab	0	0	6	30	20	50	100	150	3
3	Professional Core	PCFET-20499	Food Engineering-I Lab	0	0	2	10	10	20	30	50	1
4		GP-20500	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	15	1	10					1000	21

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) THIRD YEAR, FIFTH SEMESTER

[Effective from the Session 2022-23]

S.N.	Category	Course	Course Title	Periods		S	E	Evaluat	ion Sch	eme	Total	Credits
		Code		(Hou	rs per v	week)	Sess	ional E	xam.	ESE		
				L	Т	Р	СТ	ТА	Total			
THEC	DRY	•						•	-			•
1	Humanities, Social Sciences including Management	HSMHU-3481	Industrial Economics and Principles of Management	2	0	0	15	10	25	50	75	2
2	Professional Core	PCFET-3482	Food Biochemistry and Biotechnology	3	0	0	30	20	50	100	150	3
3	Professional Core	PCFET-3483	Food Analysis	3	0	0	30	20	50	100	150	3
4	Professional Core	PCFET-3484	Traditional and Fermented Foods	3	0	0	30	20	50	100	150	3
5	Professional Core	PCFET-3485	Food Safety and Food Laws	2	0	0	15	10	25	50	75	2
6	Professional Core	PCFET-3486	Food Engineering-II	3	0	0	30	20	50	100	150	3
PRAC	TICALS	•						•	-			•
1	Professional Core	PCFET-30487	Food Biochemistry and Biotechnology Lab	0	0	4	20	20	40	60	100	2
2	Professional Core	PCFET-30488	Food Analysis Lab	0	0	4	20	20	40	60	100	2
3	Professional Core	PCFET-34089	Food EnggII Lab.	0	0	2	10	10	20	30	50	1
4		GP-34090	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	16	0	10					1000	21

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) THIRD YEAR, SIXTH SEMESTER

[Effective from the Session 2022-23]

S.N.	Category	Course	Course Title	Periods		S	F	Evaluat	ion Sch	eme	Total	Credits
		Code		(Hou	rs per	week)) Sessional Exam.			ESE		
				L	Т	Р	СТ	ТА	Total			
THEC	DRY	•						•				•
1	Professional Core	PCFET-3486	Dairy Technology	2	0	0	15	10	25	50	75	2
2	Professional Core	PCFET-3487	Flavour Technology	2	0	0	15	10	25	50	75	2
3	Professional Core	PCFET-3488	Food Preservation and Processing Principles	3	0	0	30	20	50	100	150	3
4	Engg. Science	ESME-3489	Machine Design	2	1	0	30	20	50	100	150	3
5	Professional Core	PCFET-3490	Cereals, Pulses and Oil Seed Products	3	0	0	30	20	50	100	150	3
6	Professional Core	PCFET-3491	Food Engineering-III	3	0	0	30	20	50	100	150	3
PRAC	CTICALS									-		
1	Professional Core	PCFET-30492	Food Engineering-III Lab	0	0	2	10	10	20	30	50	1
2	Professional Core	PCFET-30493	Food Preservation And Processing Principles Lab.	0	0	6	30	20	50	100	150	3
3		FET-30495	Seminar	0	0	2			50		50	1
4		GP-30494	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	15	1	10					1000	21

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) FOURTH YEAR, SEVENTH SEMESTER

[Effective from the Session 2022-23]

S.N.	Category	Course	Course Title]	Period	s	E	Evaluat	ion Sch	eme	Total	Credits
		Code		(Hou	rs per	week)	Sess	ional E	xam.	ESE		
				L	Т	Р	СТ	ТА	Total			
THEC	DRY											
1	Professional Core	PCFET-4481	Fruits, Vegetables and Plantation Products	3	0	0	30	20	50	100	150	3
2	Professional Core	PCFET-4482	Food Quality	3	0	0	30	20	50	100	150	3
3	Open Elective	OE	Open Elective Course*	2	0	0	15	10	25	50	75	2
4	Professional Elective	PEFET-4484	DE-I: 1. Food Product development & Sensory Evaluation 2. Post harvest management of fruits and vegetables 3.Engineered, Texturized & Fabricated Foods 4.Nutraceutical & Functional Foods	2	0	0	15	10	25	50	75	2
5	Professional Core	PCFET-4485	Bakery and Confectionary Technology	3	0	0	30	20	50	100	150	3
PRAC	CTICALS	•						•				•
1	Professional Core	PCFET-40486	Food Quality Evaluation Lab.	0	0	4	30	20	50	100	150	2
2	Project	Proj.FET- 40487	Mini Project	0	0	6			150		150	3
3	Summer Internship	SIFET-40488	Industrial Training	0	0	2			100		100	1
4		GP-40489	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	13	0	12					1000	19

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) FOURTH YEAR, EIGHTH SEMESTER

[Effective from the Session 2022-23]

S.N.	Category	Course	Course Title]	Period	5	E	valuat	ion Sch	eme	Total	Credits
		Code		(Hou	rs per	week)	Sess	ional E	xam.	ESE		
				L	Т	Р	СТ	ТА	Total			
THEC	RY	•		•	•							
1	Professional Elective	PEFET-4486	DE-II: 1. Speciality Foods 2. Food Process Equipment Design 3. Food Processing Waste Management 4. Novel Food Processing Technologies	2	0	0	15	10	25	50	75	2
2	Professional Core	PCFET-4487	Meat, Fish & Poultry Products Technology	3	0	0	30	20	50	100	150	3
3	Professional Core	PCFET-4488	Food Plant Layout and Design	2	1	0	30	20	50	100	150	3
4	Professional Core	PCFET-4489	Food Packaging	3	0	0	30	20	50	100	150	3
5	Engg. Science	ESCH-4490	Industrial Safety and Hazard Management	2	0	0	15	10	25	50	75	2
PRAC	TICALS									•	•	
1	Project	Proj.FET- 40491	Project	0	0	12			150	250	400	6
2		GP-40492	General Proficiency (Non Credit)	0	0	0			50		50	-
			Total	12	1	12					1000	19

<u>*List of Open Elective Courses:</u>

S.N.	Category	Course	Course Title]	Period	s	E	valuat	ion Sch	eme	Total	Credits
		Code		(Hou	rs per	week)	Sess	ional E	xam.	ESE		
				L	Т	Р	СТ	ТА	Total			
1	Open Elective (Humanities)	OEHU-4483	Entrepreneurship Development	2	0	0	15	10	25	50	75	2
2	Open Elective (Humanities)	OEHU	Human Values	2	0	0	15	10	25	50	75	2
3	Open Elective (Electronics & Communication)	OEEC	Artificial Neural Network & Fuzzy Logic	2	0	0	15	10	25	50	75	2
4	Open Elective (Maths)	OEMA	Operations Research	2	0	0	15	10	25	50	75	2
5	Open Elective (Computer Science)	OECSE	Human Computer Interaction	2	0	0	15	10	25	50	75	2
6	Open Elective (Mechanical Engg.)	OEME	Solar Energy	2	0	0	15	10	25	50	75	2
7	Open Elective (Instrumentation)	OEEI	Industrial Instrumentation	2	0	0	15	10	25	50	75	2
8	Open Elective (Biomedical Engg.)	OEBM	Health, Hospital and Equipment Management	2	0	0	15	10	25	50	75	2
9	Open Elective (Biotechnology Engg.)	OEBT	Fermentation Technology	2	0	0	15	10	25	50	75	2
10	Open Elective (Food Engg. & Technology)	OEFET	Nutritional Aspects of Natural & Processed Foods (Except Food Engg. & Technology Students)	3	0	0	30	20	50	100	150	3

CURRICULUM: B. TECH. (FOOD ENGG. & TECHNOLOGY)

CHAPTER-3 STUDY AND EVALUATION SCHEME B. TECH. (FOOD ENGINEERING & TECHNOLOGY) [Effective from the Session 2022-23]

List of Value Added Courses Institute of Engineering and Technology

SEM -I	SEM-II
Photography	Cyber security & ethical hacking
Google Ads	Digital marketing
Goal Setting	Bio-CNG (Green Fuel)
SEM-III	SEM-IV
IELTS IID	E- waste recycling business
Mushroom Cultivation Business	Advance Excel
Introduction to MATLAB	Mobile App Development
SEM-V	SEM-VI
Internet of things (IOT)	Marketing Content Writer
Bakery Technology	Milk Processing Business
Drone technology	Organic Waste Management

Note-

- \checkmark The Students have to choose any one value added course in each semester from the list.
- \checkmark The course will be of no evaluative and non credit in nature
- \checkmark Each value-added course shall be of 30 hrs.

CHAPTER 4

COURSE OBJECTIVES, COURSE OUTCOMES (COS), CO-PO MAPPING & DETAILED 4-YEAR CURRICULUM CONTENTS

Undergraduate Degree in Engineering & Technology

Program B. TECH. (FOOD ENGINEERING & TECHNOLOGY)

Offered by

Department of Food Technology Institute of Engineering & Technology Bundelkhand University, Jhansi

Course Ti	itle	ELE	ELEMENTARY MATHEMATICS											
Course co	de	BSM	IA-184	-2										
Category		Basi	c Scien	ice Cou	ırse									
Scheme an	nd		L			Т		Р		С	Seme	ester I		
Credits			2			1		0		3				
Pre-requi	sites	None	e.											
(if any)		Desi	rable –	Know	ledge c	of basic	: mathe	matics						
Course		The	objecti	ve of th	nis cou	rse is to	o impai	rt						
Objective	S	•	• The	knowl	edge al	bout th	e elem	entary	mather	natics f	for the s	students	other that	n
			mat	hemati	cs grou	ip in 10)+2 lev	el Colgobr	o and a	ماميام				
Course O	utcom	PG		KIIUWI	euge a	bout be		aigeoi	a anu c	alculus	>			
Course O	utcom	60												
On the suc	cessful	l comp	ompletion of the course, students will be able to											
CO1	Unda	untou d	and basic algebra and statistics											
	Unde	rstand	tand basic algebra and statistics Understanding											
CO2	Unde	erstand	tand the use of matrices Understanding											
CO3	Unde	erstand	basics	of diff	erentia	l calcul	lus					Under	standing	
	0.1	1.00	1									A 1	•	
C04	Solve	differ	ential e	quation	ns							Apply	ing	
CO5	Unde	erstand	basics	of inte	gral ca	lculus						Under	standing	
000	onac	notuna	ousies	or me	Si ui cu	icuius						e nuer	5.000000	
CO-PO M	annin	σ												
	apping	5												
	1: Sligh	nt (Low	v) 2:	: Mode	rate (M	ledium) 3:	Substa	ntial (l	High)	"-": I	No Corr	elation	
COs						POs							PSOs	5
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	1	_	_	_	_	_	_	_	_	1	2
CO2	1	2	2	1	_	_	_	_	-	-	_	-	1	1
CO3	1	2	2	1	-	-	-	-	-	-	-	-	1	1
CO4	1	2	2	1	-	-	-	-	-	-	-	-	1	1
CO5	1	2	2	1	-	-	-	-	-	-	-	-	1	1
Average	1	2	2	1	-	-	-	-	-	-	-	-	1	1.2

Detailed C	ontents			
Module		Contents	L	Т
			(Hours)	(Hours)
I	Algebra: Binomial Theorem Progression (A. P.). Arithmet general term of a G.P., sum of geometric mean (G.M.), relation Statistics: Mean, Median, Mod	(for positive integral index only). Arithmetic ic Mean (A.M.) Geometric Progression (G.P.), of n terms of a G.P., infinite G.P. and its sum, n between A.M. and G.M. e, Probability	6	3
II	Matrices (Addition, Subtraction Inverse of matrices by adjoint n (of order three only), Permutation	on), Product of Matrices, Transpose, Adjoint, nethod, solution of linear equations, Determinants ion and combination.	6	3
III	Differential Calculus: Function Product rule, Quotient Rule of Function, Inverse of Trigonon Form, Parametric Form, Differ one variable.	n, Limit of Function, Differentiation of function, Differentiation, Differentiation of Function of a netric Function, Differentiation of Logarithmic rentiation by substitution, maxima & minima of	6	3
IV	Differential equations: Definition of a differential equation, Differential equations Solutions of differential equation homogenous differential equation.	on, order & degree, General & particular solutions ferential equations of first order & first degree, ations by method of separation of variables, uations, linear differential equation, Exact	6	3
V	Integral calculus: Integration a integrals of standard form, Inte fraction parts, Basic properties integrals.	s inverse process of differentiation, Infinite egration of functions by substitution, by partial of definite integrals & evaluation of definite	6	3
	Total		30	15
L: Lectur	e, T: Tutorial, P: Practical, C: Cro	edits, CO: Course Outcomes, PO: Program Outcom	nes,	•
PSO: Pro	gram Specific Outcomes			
Suggested	Books:			
S.N.	AUTHOR	TITLE		
1	H.K. DASS	Introduction to Engineering Mathematics Volume	- <i>I</i>	

Course T	Title	ELE	MENT	ARY B	IOLO	GΥ								
Course c	ode	BSBI	L-1852											
Category	7	Basic	c Scien	ce Cou	rse									
Scheme a	and		L			Т	F)		С	Sem	nester I		
Credits			2			1	0)		3				
Pre-requ	isites	The l	knowle	dge ab	out bas	sic scie	nce.							
(if any)														
Course		The	object	ive of	this co	urse is	to impa	art						
Objective	es		• Th	e know	ledge	about t	he dive	ersity of	f life in	cludin	g bacter	ria, prot	ists, plan	ts,
			fur	ngi, and	l anima	als.								
			• Th	e know	ledge	about t	he hum	an phy	vsiolog	у.				
Course C	Outcon	nes												
On the su	aggest	ful completion of the course, students will be able to												
CO1	Und	erstand	l funda	or the mental	s of pla	$\frac{1}{2}$ studes	nimal k	ingdoi	$\frac{1}{2}$ m and 1	mornho		Unde	retanding	T
COI	of	derstand rundamentals of plant & annual Kingdom and morphology Understanding												
	plan	ts	3											
CO2	Exp	lain abo	ain about plant physiology Understanding											
CO3	Und	erstand	l about	basic z	coology	y and c	ytology	1				Unde	rstanding	5
CO4	Fyn	lain ah	out the	nlant a	nd hur	nan nh	vsiolog	W				Unde	rstanding	r
0.04	LAP		sut the	piant a	ina nan	nan pri	y 51010g	, y				Chide	istanding	,
C05	Unde	erstand	the ge	netics	and mo	lecular	hiolog	·V				Unde	retanding	T
005	Und	51 Stallu	the ge	lieues a	inu mo	leculai	biblog	, y				Unde	istanum	5
CO-PO N	Марріі	ng												
1 01 1 4	(T)	2.14	1 4	A 1'	`	2 0 1	, , .	1 /11. 1) ((22 N T	C 1	,.		
1: Slight ((Low)	2: MG	oderate	(Medi	um)	3: Sut	ostantia	il (High	1) .	- : NO	Correla	tion		
COs						PO	s						PSC)s
		DO	DO	DO	DO			DO	DO	DO	DO1	DO1		DEO2
	r0 1	PU 2	PU 3		FU 5	FU 6	PO 7	PU g		10	1 roi	PO1 2	F501	P502
CO1	2	1	5		3	1	2	0	,	10	1	4	2	2
	2	1	-	-	-	1	2	-	-	-	-	-	2	2
CO2	1	1	-	-	-	-	2	-	-	-	-	-	2	2
CO3	2	-	-	-	-	1	-	-	-	-	-	-	2	2
CO4	1	1	2	-	-	2	2	-	-	-	-	-	2	2
CO5	2	2	2	2	-	2	2	-	-	-	-	-	2	2
Average	16	1.0	0.8	04	_	12	16	_	_	_	_	_	2	2

Detailed	Contents			
Module		Contents	L	Т
			(Hou	(Hou
			rs)	rs)
Ι	Introduction to plant and ani	mal kingdom and broad outlines of their	6	3
	classification. Study of plant and flower.	and animal tissue; morphology of root, stem, leaf		
II	Reproduction in flowering p	plants. Inflorescence and its types; Fruit and types	6	3
	of fruit. Study of seed, its str	ucture and seed germination with special		
	reference to maize, pea, whe	at, rice.		
III	Definition and branches of 2	Zoology. Idea of living and non-living matter.	6	3
	Structure of cell; Plant and a	nimal cell. Protoplasm and its structure.		
	Properties of protoplasm. Ce	Il division; amitosis, mitosis and meiosis.		
	Chromosome- structure and	functions. Brief idea of Nucleic acids – DNA,		
IV	Plant physiology: Nutrient t	ransport in plants. Growth and development	6	3
1 V	Perpiration and Photosynthe	sis Human Physiology: Digestive System	0	5
	Digastion of food Absorptio	sis. Human Hystology: Digestive System –		
	Endeavine Sectors Claude	and Hammana		
	Endocrine System – Glands	and Hormones		
V	Concept of gene, Protein sy	nthesis, Chromosome alterations, Mutation and its	6	3
	types. Recombinant DNA T	echnology.		
	Total		30	15
L: Lectur	re, T: Tutorial, P: Practical, C: C	Credits, CO: Course Outcomes, PO: Program Outco	mes,	
PSO: Pro	ogram Specific Outcomes	-		
Suggestee	l Books			
S.N.	AUTHOR	TITLE		
1	Biswa, S. & Biswas, A.	A text book of Biology, Pradeep Publications.		
	(2007)			
2	NCERT Publication	Text books of Biology (Class XI and XII)		

Course Ti	itle	ENC	GINEE	RING	MATI	HEMA	TICS	- I						
Course co	de	BSM	IA-185	5										
Category		Basi	c Scien	ce Cou	ırse									
Scheme an	nd		L			Т		Р		С	Seme	ester II		
Credits			2			1		0		3				
Pre-requi	sites	Knov	wledge	of eler	nentar	y math	ematics	8	•					
(if any)			_											
Course		The	objecti	ve of th	nis cou	rse is to	o impai	rt						
Objective	S	•	Bas	ic Math	nematic	cal skil	ls of en	gineer	ing stu	dents tl	nat are i	imperati	ve for ef	fective
			und	erstand	ing.									
Course O	utcome	es												
On the suc	cessful	l comp	letion of	of the c	ourse,	student	ts will l	be able	to					
												-		
CO1	Solve	e the m	<i>atrix</i> e	quation	using	elemer	ntary <i>m</i>	atrix o	peratio	ns and	use	Apply	ving	
	syste	ms of l	inear e	quation	ns and a	matrix	equation	ons to c	letermi	ne line	ar			
~~~	deper	ndency	' <b>.</b>											
CO2	Form	ulate c	complet	te, cond	cise, an	d corre	ect mat	hemati	cal pro	of and	frame	Apply	ving	
	probl	lems us	sing mu	iltiple i	nathen	natical	and sta	tistical	repres	entatio	ns of			
	relev	ant stru	ictures	and re.	lations	nips an	d solve	using	standa	rd tech	niques.			
CO3	alace	ify diff	arantia	1 aquat	iona th	ot con 1	ba colu	od by a	hach of	tha thr	00	Analy	aia	
0.05	meth	ny uni ods _ c	direct ir	1 equai	on ser	at Call	be solv	eu Dy e riables	and int	eoratin	cc a	Anary	515	
	facto	r meth	nd – an	d use f	he ann	ronriate	e metho	nd to se	and in alve the	ogratin m	B			
CO4	Eval	uate m	ultinle	integra	uls for 1	regions	in the	nlane a	and to t	find are	ea of	Apply	ing	
	the re	egion b	ounded	l bv cu	rves an	d to fi	nd volu	me. su	rface a	rea. Ma	ass.	1-PP-J		
	etc. &	k apply	/ centra	l conce	epts in	multiv	ariable	analys	is, incl	uding s	pace			
	curve	es; dire	ctional	deriva	tive; gi	adient		5	,	U	1			
СО-РО М	annin	or and a second s												
	apping	5												
	1: Sligł	nt (Low	v) 2:	Mode	rate (M	ledium	) 3:	Substa	ntial (I	High)	''-'': N	No Corr	elation	
COs						POs							PSOs	5
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	1	2	2	1	2	-	_	-	-	-	_	2	1
CO2	2	2	1	1	2	2	_	-	_	-	_	-	2	1
CO3	2	3	2	2	1	3	-	_	_	_	_	_	1	2
CO4	2	2	2	2	1	2	_	_	_	-	_	_	1	2
Average	2.0	2.0	1.8	1.8	1.3	2.3	_	_	_	_	_	_	1.5	1.5



Detailed (	Contents			
Module		Contents		T
T	Matriaga, alamantary, r	ory and column transformation reals of a matrix	(Hours)	(Hours)
1	characteristics equation,	eigen values, eigen vectors, Cayley- Hamilton theorem.	0	5
Π	Statistics: Moments, Kurtosis,Correlation and Normal distribution, Chi Curve Fitting: Method o parabola.	Moment generating functions, Skewness, Regression, Binomial distribution, Poisson distribution, square test, T test, F test, Z test, analysis of variance. of least squares and curve fitting of straight line and	6	3
III	Differential Calculus: Le Expansion of function of Exterma of functions of (Simple applications).	eibnitz theorem, Partial differentiation, Eulers theorem, Several variables, Jacobian, , Approximation of errors, f several variables, Lagranges method of multipliers	6	3
IV	Multiple Integrals: Dou variables, Beta and Gam	ble and triple integral, Change of order, Change of ma functions, Application to area, volume.	6	3
V	Vector differentiation: interpretation, Direction Integration: Line integra theorem, Green's theo applications.	Gradient, Curl and Divergence and their Physical nal derivatives, Tangent and Normal planes. Vector l, Surface integral, Volume integral, Gauss's Divergence orem, Stoke's theorem ( without proof) and their	6	3
	Total		30	15
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, gram Specific Outcomes	C: Credits, CO: Course Outcomes, PO: Program Outcon	nes,	
Suggested	Books:			
S.N.	AUTHOR	TITLE		
1	B.S.Grewal B.S.Grewal	Engineering Mathematics, Khanna Publishers, 2004. Higher Engineering Mathematics, Khanna Publishers,	2005.	



Course T	410	ENC	INTE	DINC			TICC	TT							
Course II	do	ENC DSM	JINEE 1 A 249		MAI	HEMA	IICS.	•11							
Cotogory	ue	Bosi	$\frac{1A-240}{2}$		raa										
Category	a d	Dasi			lise	т	1	D		C	Com	at an III			
Scheme al	na		2 L			1		P 0		<u>t</u>	Seme	ester III			
Dra nagui	aitaa	Elan	J	Matha	motion	1 9- Doo	io Enci	U in a amin	~ Math	4					
(if any)	sites	Elen	lentary	Mathe	matics	& Das	sic Eng	meerm	g Mati	lematic	-8				
(II ally)		The	objecti	vo of th	ic cour	rao ia t	impo	unt-							
Objective	S	The	objecu The	knowl	ns cou	f the th	eory of	f ording	arv diff	Ferentia	l equati	ions thre	ugh ann	lications	
Objective	5		met	hods of	f soluti	on. and	l nume	rical ar	proxin	nations	ii equu		Jugii upp	neurons,	
		•	The	knowl	edge al	bout id	entifyi	ng curv	ves and	region	s in the	comple	ex plane o	defined	
			by s	imple e	express	sions, d	lescribi	ng bas	ic prop	erties of	of comp	lex inte	gration,		
			com	puting	such in	ntegral	s and d	eciding	g when	and w	here a g	given fu	nction is	analytic	
~ ~ ~			and	be able	e to fin	d it ser	ies dev	elopme	ent.						
Course O	utcom	es													
On the suc	cessfu	l comp	completion of the course, students will be able to												
	1		· · · · · · · · · · · · · · · · · · ·												
CO1	Class	Classify the <i>differential equations</i> with respect to their <i>order</i> and Analyzing													
	linear	arity & Explain the meaning of solution of a <i>differential equation</i>													
	TT 1	· 1	/1 1	•		CDDT	- 14	(1 1	•	1	1	TT 1	· 1'		
CO2	Unde	erstand	and the basic properties of PDEs and to the basic analytical Understanding												
	techn	iques t	o sorve	e mem											
CO3	Dopr	acont a	omnlav	numh	are ala	abraica	lly & c	raomat	rically	and		Under	standing		
0.05	Unde	esent Co	Cauch	v-Riem	eis aige	unation	ury & g s anals	tic fun	octions	and va	rious	Under	standing		
	prope	erties of	f analy	tic fund	ctions	luarion	s, anary	, lic Tull	ictions	ana va	nous				
CO4	Unde	erstand	Cauch	v theor	em and	l Cauch	nv integ	gral for	mulas	and ap	plv	Applvi	ng		
	these	to eva	luate co	omplex	conto	ur integ	grals	5		r	E-J		0		
				1		·									
CO5	Unde	erstand	differe	nt solu	tion tec	chnique	es and u	use too	ls like	Fourie	r	Applyi	ng		
	trans	forms ,	Fourie	er serie	s, Z. – i	transfo	orms.								
СО-РО М	appin	g													
	11 4	5													
	1: Sligl	nt (Low	v) 2:	Mode	rate (M	Iedium	) 3:	Substa	ntial (l	High)	"-": I	No Corr	elation		
COs						POs							PSOs	5	
	<b>PO1</b>	<b>PO2</b>	<b>PO3</b>	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>	PSO1	PSO2	
C01	2	1	2	2	1	2	-	-	-	-	-	-	2	1	
CO2	2	2	1	1	2	2	-	-	-	-	-	-	2	1	
CO3	2	3	2	2	1	3	-	-	-	-	-	-	1	2	
CO4	2	2	3	2	3	2	-	-	-	-	-	-	1	2	
CO5	2	1	2	1	2	3	-	-	-	-	-	-	2	2	
Average	2	1.8	2	1.6	1.8	2.4	-	-	-	-	-	-	1.6	1.6	



		~	-	
Module		Contents	L	T
			(Hours)	(Hours)
Ι	Differential Equations of seco variation of parameters, Homog differential equations with co equations in engineering.	and order with constant coefficients, Method of genous differential equations, simultaneous linear onstant coefficients, applications of differential	9	3
Π	Introduction of partial different with constant coefficients of elliptic and hyperbolic with variables for solving partial di dimensions, Heat conduction en	ial equations, Linear partial differential equations 2nd order and their classifications - parabolic, illustrative examples. Method of separation of ifferential equations, Wave equation up to two- quations up to two-dimensions.	9	3
III	Function of complex variable functions, Conformal mapping.	s: Analytic functions, CR equations, Harmonic, Bilinear transformation.	9	3
IV	Complex Integration: Line i integral formula, Taylor's an Cauchy Residue theorem, App integrals.	ntegral, Cauchy's integral theorem, Cauchy's ad Laurent's series (without proof), Residues, lication of residue theorem for evaluation of real	9	3
V	Integral transform: Fourier tran and cosine transform, Z tran equation. Fourier series, Half range Four	nsform, Fourier complex transform, Fourier sine sform and its application to solve differential ier sine and cosine series.	9	3
	Total		45	15
L: Lectur	e, T: Tutorial, P: Practical, C: Cro	edits, CO: Course Outcomes, PO: Program Outcon	nes.	
PSO: Pro	gram Specific Outcomes	,,,,,	~ 7	
Suggested	Books/References:			
S.N.	AUTHOR	TITLE		
1	H.K. DASS	Introduction To Engineering Mathematics Volun	ne-II	



Course Ti	se Title INSTRUMENTATION AND PROCESS CONTROL														
Course co	de	ESCH-2482													
Category		Engg. Science Course													
Scheme and			L			Т		Р		С	Seme	Semester III			
Credits			2			0		0		2					
Pre-requisites		None.													
(if any)	Desi	rable –	Know	ledge o	of basic	physic	es								
Course	The objective of this course is to impart														
Objectives		Fundamental knowledge of process control													
	• Knowledge about various types of measuring instruments used in different types of														
	<ul> <li>Knowledge about characteristics of different types of controllers for controlling a</li> </ul>														
	process and process automation										ung a				
rr															
Course Outcomes															
On the successful completion of the course, students will be able to															
C01	Understand the basic principles & importance of process control in Understanding														
	industrial process plants									-					
CO2	Choo	Choose/specify the required instrumentation and final elements to ensure Applying													
	that v	hat well-tuned control is achieved													
				11 .	<u> </u>	1 •	6	. 1		C	•				
C03	Apply mathematical basis for the design of control systems for various Applying														
	processes carried out in the industry.														
CO-PO Mapping															
<u> </u>	I: Sligi	: Slight (Low) 2: Moderate (Medium) 3: Substantial (High): No Correlation													
COs		r U8										P509	\$		
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	2	2	-	-	-	-	-	-	-	3	3	
CO2	3	3	3	3	3	-	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	-	-	-	-	-	-	_	3	3	
Average	3	2.7	3	2.7	2.7	-	-	-	-	-	-	-	3	3	


Module	Contents	L	Т
		(Hours)	(Hours
Ι	Elements of measurement, functions and general classifications of measuring instruments. Indicating and recording type of instruments. Elements of measuring instruments, static and dynamic characteristics of measuring instruments.	7	-
II	Principle of operation, construction and application of important industrial instruments for the measurement of temperature, flow, liquid level and composition.	6	-
III	Dynamic behavior of first order, second order and two or more first order systems in series.	5	-
IV	Block and physical diagrams of control system. Open and closed loop control systems. Characteristics of measuring elements, controllers and final control elements. Mods of control actions.	6	-
V	Response of closed loop control systems for various kind of control actions and measurement lag.	6	-
	Total	30	-
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcon gram Specific Outcomes	nes,	
Suggested	Books/References:		
S.N.			
1	Coughanowr, D. R., & Koppel, L. B. (1965). Process systems analysis and control (Vol. McGraw-Hill.	2). New Y	ork:
2	Jain, R. K. (1996). Mechanical and industrial Measurements. Khanna Publishers.		
3	Dunn, W. C. (2018). <i>Fundamentals of industrial instrumentation and process con</i> Hill Education.	trol. McC	Graw-
4	Kress-Rogers, E., & Brimelow, C. J. (Eds.). (2001). Instrumentation and sensors f industry (Vol. 65). Woodhead Publishing.	for the foo	bd
5	Douglas, O. J. (2019). Instrumentation fundamentals for process control. Routleds	ge.	
6	Prasad, J., Jayaswal, M. N., & Priye, V. (2013). Instrumentation and process contr International Pvt Ltd.	rol. IK	
7	Romagnoli, J. A., & Palazoglu, A. (2005) Introduction to process control CRC p	ress.	
0	do So D O (2004) Applied technology and instrumentation for process control	CDC Dro	



Course Ti	tle	FOC	)D CO	MPOS	SITIO	N AND	HUM		UTRI	TION						
Course co	de	PCF	ET-248	33		111112										
Category		Profe	essiona	l Core	Course	e										
Scheme an	nd		L			Т		Р		С	Seme	ester III				
Credits			3			0		0		3						
Pre-requi	sites	None	e.													
(if any)		Desi	rable –	Know	ledge o	of basic	chemi	stry								
Course		The	objecti	ve of th	nis cou	rse is to	o impai	rt								
Objective	S	•	The	knowl	edge al	bout th	e majo	r and n	ninor c	onstitue	ents of t	foods ar	nd their fu	unctions		
		•	The	knowl	edge al	bout ba	sics of	humar	n nutrit	ion						
0	rse Outcomes															
Course O	Course Outcomes															
On the successful completion of the course, students will be able to																
CO1	Unde	Understand desirable and undesirable food constituents and basics of Understanding														
	huma	uman nutrition interpret														
<u> </u>	Comr	Compare and classify foods and their constituents according to their Analyzing														
02	nutritional value and role in human health															
	natin															
CO3	Prepa	Prepare a dietary plan for different age groups of Indian considering RDA Applying														
	and in	nterpret	t the ef	fect of	proces	sing on	food c	compor	nents		8-12-1-		8			
		1			•	U		1								
CO4	Asses	ssment	of nutr	itional	status	of hum	an by v	various	techni	ques		Evalua	nting			
СО-РО М	apping	g														
	•••															
	1: Sligh	nt (Low	v) 2:	Mode	rate (M	Iedium	) 3:	Substa	ntial (l	High)	"-": Ì	No Corr	elation			
COs						POs							PSOs	6		
	<b>PO1</b>	PO2	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	3	1	-	3	-	-	-	-	-	-	2	2		
CO2	2	2	3	2	-	3	-	-	-	-	_	-	3	3		
CO3	2	2	3	3	_	3	-	_	-	-	_	2 3 3				
CO4	1	3	3	3	-	3	-	-	-	-	-	2 3 3				
Average	1.8	2.3	3	2.3	_	3	-	_	-	-	_	1.0	2.8	2.8		



Detailed (	Contents	1	
Module	Contents	L (Hours)	T (Hours)
I	Composition: Chemical constituents of foods: Desirable and Potentially undesirable food constituents and their importance. General and specific composition for different foods of plant and animal origin.	9	-
II	Carbohydrates: Classes, Nomenclature and structure. Dietary utilization and disturbances. Lipids: Definition, Classification and structure: Fatty acids composition of natural lipids of plants and animal origin, Essential fatty acids. Role and use of natural lipids and tailor made fats in foods.	9	-
III	Protein: Physico-chemical properties of amino acids, peptides and proteins, structure - function relationship of proteins, Essential Amino acids. Vitamins and minerals: Types of vitamins and minerals, functions, sources and deficiency diseases.	9	-
IV	Nutrition: Food groups and their typical composition. Recommended Dietary Intakes (RDI) and its uses. Factors affecting nutritional requirement of an individual. The exchange list system and diet planning principles. General causes of loss of nutrients. Restoration, Enrichment, Fortification and Supplementation of foods.	9	-
V	Malnutrition: Type of Malnutrition, Multi-factorial causes, Epidemiology of under nutrition and over nutrition. Assessment of nutritional status; Diet surveys, Anthropometry, Clinical examination, Biochemical assessment, Additional medical information. Digestion, Absorption and Metabolism of food in human body. In-born error of metabolism. Balanced diets for normal individuals. Calorific value of foods.	9	-
	Total	45	-
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcor gram Specific Outcomes	nes,	
Suggested	Books/References:		
S.N.			
	Gopalan, C., Rama Sastri, B. V., & Balasubramanian, S. C. (1971). Nutritive values	ue of Indi	an
2	Potter, N. N., & Hotchkiss, J. H. (2012). Food science. Springer Science & Busin	ess Medi	a.
3	Damodaran, S., Parkin, K. L., & Fennema, O. R. (Eds.). (2007). Fennema's food press.	chemistry	y. CRC
4	Shubhangini A. Joshi, Nutrition and Dietetics		
5	"human nutrition   Importance, Essential Nutrients, Food Groups, & Facts". Encyclopedia Brit	annica.	
0	Lean, Michael E.J. (2015). "Principles of numan nutrition". Medicine. 43 (2): 61–65.		



~ ~																	
Course Ti	itle	BAS	IC AN	D FO	OD M	ICROI	BIOLC	DGY									
Course co	de	PCF	ET-248	34													
Category		Profe	essiona	l Core	Course	e											
Scheme an	nd		L			Т		Р		С	Seme	ester III					
Credits			3			0		0		3							
Pre-requi	sites	The	knowle	edge ab	out ba	sic biol	ogy.		1								
(if any)				0			0,										
Course		The	obiecti	ve of th	nis cou	rse is to	o impa	rt									
Objective	S	•	The	knowl	edge a	bout th	e role o	of micr	oorgan	isms ir	food s	poilage					
Ū		•	The	knowl	edge a	bout pa	thogen	ns, myc	otoxin	, viruse	s and p	arasites					
		•	The	knowl	edge a	bout th	e food	poison	ing and	d food	borne ir	nfection	S				
Course O	rse Outcomes																
On the suc	On the successful completion of the course, students will be able to																
		- ••••••p			o				•••								
CO1	Unde	erstand the general characteristics of microorganism: classification, Understanding															
	morpl	rphology, physiology, growth, nutrition, reproduction & their occurrence in															
	variou	ous foods and its consequences															
CO2	Use t	Use techniques of preservation of various foods from spoilage due to Applying															
	micro	microbial contamination															
CO3	Evalı	late for	ods for	their p	otentia	l health	n risks	and im	plemer	nt the		Evalu	ating				
	micro	obial qu	ality a	ssuran	ce syst	ems in	food ir	ndustry	includ	ing GN	IP and						
	HAC	CP															
CO4	Utiliz	ze bene	ficial r	nicroor	ganisn	ns in fo	od pro	cessing	g indus	try to d	evelop	Apply	ving				
	vario	us fern	nented	foods													
СО-РО М	annin	σ															
	apping	5															
	1: Sligh	nt (Low	<i>i</i> ) 2:	Mode	rate (N	ledium	) 3:	Substa	ntial (l	High)	''-'': Ì	No Corr	elation				
COs					·	POs			· · ·				PSOs	5			
	PO1	PO2	PO3	<b>PO</b> 4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO12	PSO1	PSO2			
CO1	2	2	2	2	105	2	2	100	107	1010	1011	1012	2	2			
	2	Z	2	2	-	2	Z	-	-	-	-	-	3	3			
CO2	3	3	2	2	2	3	3	-	-	-	-	-	3	3			
CO3	3	3	3	2	2	3	2	-	-	-	-	- 3 3					
CO4	3	2	3	2	-	2	-	-	-	-	-	- 3 3					
Average	2.8	2.5	2.5	2.0	0.4	2.5	1.75	-	-	-	-	-	- 3 3				



Detailed C	Contents		
Module	Contents	L (Hours)	T (Hours)
I	General characteristics of microorganism: Classification, morphology, physiology, growth, nutrition and reproduction; Pure culture techniques and maintenance of cultures, control of microorganism.	9	-
II	Incidence of microorganism in foods, source of contamination. Principle underlying spoilage and preservation of foods.	6	-
III	Contamination, spoilage and preservation of cereal products, sugar products, fruit and vegetable products, meat products, fish and sea foods egg and poultry products milk and milk products and other foods, Microbiological standard of foods.	15	-
IV	Food poisoning and food borne infections, food plant sanitation, inspection and control, personnel hygiene, HACCP in food industry. Beneficial microorganisms and their utilization in food fermentation.	15	-
	Total	45	-
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcom gram Specific Outcomes	nes,	
Suggested	Books/References:		
S.N.			
1	Pelczar, M. J., & Reid, R. D. (1958). Microbiology. Krishna Prakashan Media.		
2	Jay, J. M., Loessner, M. J., & Golden, D. A. (2008). Modern food microbiology. & Business Media.	Springer S	Science
3	Frazier, W. C., & Westhoff, D. C. (1988). Food microbiology, New York (NY): M Book.	AcGrow-2	Hill
4	Fratamico PM (2005). Bayles DO (ed.). Foodborne Pathogens: Microbiology and Biology. Caister Academic Press. ISBN 978-1-904455-00-4.	Molecul	ar
5	Ray, B. Fundamental Food Microbiology, 3rd Ed. (2005)		
6	Adams, M. R., Moss, M. O., & Moss, M. O. (2000). Food microbiology. Royal se chemistry.	ociety of	
7	Garbutt, J. (1997). Essentials of food microbiology. Arnold, Hodder Headline plc		
8	Matthews, K. R., Kniel, K. E., & Montville, T. J. (2017). Food microbiology: an John Wiley & Sons.	introduct	ion.
9	Doyle, M. P., Diez-Gonzalez, F., & Hill, C. (Eds.). (2020). Food microbiology: fu frontiers. John Wiley & Sons.	undament	als and
10	Erkmen, O., & Bozoglu, T. F. (2016). Food microbiology, 2 volume set: Principle John Wiley & Sons.	es into pr	actice.



Course Ti	itle	ENGINEERING PROPERTIES OF FOODS														
Course co	de	PCF	ET-284	45												
Category		Profe	essiona	l Core	Course	e										
Scheme and	nd		L			Т		Р		С	Seme	ester III				
Credits			3			0		0		3						
Pre-requi	sites	None	e.													
(if any)		Desi	rable –	Know	ledge o	of basic	chemi	stry								
Course		The	objecti	ve of th	nis cou	rse is to	o impai	rt								
Objective	S	•	The	knowl	edge o	f vario	us engi	neering	g prope	rties of	f food n	naterials	5			
		•	The	knowl ditions	edge of	f the co	oncepts	in desi	igning	01 1000	l proces	ss equip	ment and	storage		
Course O	utcom	Itcomes														
Course o																
On the successful completion of the course, students will be able to																
<u> </u>	Evol	Explain the mass volume and area related properties														
	Елріс	Explain the mass volume and area related properties Understanding														
CO2	Analy	nalyze rheological, textural, hydrodynamics and aerodynamics Analyzing														
	prope	properties of foods														
		1														
CO3	Expla	Explain the thermal, electrical and dielectric properties of foods Analyzing														
<u> </u>	Evelo	in and	000 000	lontia	1	antiaca	ndana	lura th		m of the	food	Analy	zina			
04	Expla	un suri	ace and	1 optica	ai prop	erties a	ina ana	iyze th	e colot	Ir of the	e 1000	Anary	Zing			
	produ	icts														
CO5	Relat	e water	activi	tv with	food s	tability	and us	se it to	extend	shelf l	ife of	Apply	ing			
	foods			<b>J</b>								11.2	0			
СО-РО М	appin	g														
	1: Sligł	nt (Low	<i>i</i> ) 2:	Mode	rate (N	Iedium	) 3:	Substa	intial (l	High)	"-": N	No Corr	elation			
COs						POs	_					-	PSOS	8		
	<b>PO1</b>	PO2	<b>PO3</b>	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	1	1	1	1	3	-	-	-	-	-	-	3	3		
CO2	3	3	3	3	3	2	-	-	-	_	-	_	3	3		
CO3	3	3	3	2	2	1	-	-	-	-	-	-	3	3		
CO4	3	3	3	3	3	3	-	-	-	-	-	1 3 3				
C05	3	3	3	3	2	3	-	-	-	-	-	1	3	3		
Average	3	2.6	2.6	2.4	2.2	2.4	-	-	-	-	-	0.4	3	3		



Detaneu		1	
Module	Contents	L	Т
		(Hours)	(Hours)
Ι	Mass-Volume-Area-Related Properties of Foods: volume, density, porosity,	9	-
	Surface area, pore size distribution.		
п	Mechanical properties (strain and stress) viscosity elasticity viscoelasticity	9	_
11	Newtonian and non-Newtonian fluid time dependent fluids creen and relayation		
	newtoman and non-newtoman nuld, time dependent nulds, creep and relaxation phenomena, texture profile Dough Testing Instruments, hydrodynamics and		
	aerodynamics properties of foods		
	aerodynamics properties or roods		
III	Thermal Properties of Foods: Specific heat, thermal conductivity, enthalpy and	9	-
	latent heat, thermal diffusivity. Electrical Conductivity and Dielectric Properties		
	of Foods.		
IV	Surface and optical Properties of foods: surface and interfacial tension,	9	-
	measurement of color and color order systems.		
<b>T</b> 7			
V	Water Activity and Sorption Properties of Foods: prediction and measurement of	9	-
	water activity, effects of temperature and pressure, moisture sorption isotherms		
	Total	15	
		43	-
L: Lectur	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcor	nes,	•
PSO: Pro	gram Specific Outcomes	,	
Suggested	Books/References:		
<u>S.N.</u>			
1	Welti-Chanes, J., & Aguilera, J. M. (Eds.). (2002). Engineering and Food for the	21st Cen	tury.
	CRC Press.		•
2	Heldman, D. R. (Ed.). (2012). Food process engineering. Springer Science & Bus	iness Me	dia.
3	Singh, R. P., & Heldman, D. R. (2001). Introduction to food engineering. Gulf Pro-	ofessiona	1
	Publishing.		
4	Singhal, O.P. and Samuel, D.V.K, Engineering Properties of Biological Materials		
5	Rao, M. Anandha, et al., eds. Engineering properties of foods. CRC press, 2014.		
6	Barbosa-Cánovas, G. V., Juliano, P., & Peleg, M. (2009). Engineering properties	of foods.	Food
	engineering, 1, 39.		
7	Sahin, S., & Sumnu, S. G. (2006). Physical properties of foods. Springer Science	& Busine	SS
	Media.		
8	Figura, L., & Teixeira, A. A. (2007). Food physics: physical properties-measurem	ent and	
	applications. Springer Science & Business Media.		



Course Ti	tle	CYE	BER SH	ECUR	ITY									
Course co	de	ESC	S-2846											
Category		Engg	g. Scier	ice Cou	urse									
Scheme an	nd		L			Т		Р		С	Seme	ester III		
Credits			2			0		0		2				
Pre-requi	sites	Knov	wledge	of bas	ic com	puter a	pplicat	ions						
(if any)			_			_								
Course		The	objecti	ve of th	nis cou	rse is to	o impa	rt						
Objective	S	•	The	knowl	edge al	bout de	evelopi	ng secu	ire info	ormatio	n system	m		
		•	The	knowl	edge o	f secur	ity thre	ats, dig	gital see	curity,	public l	key cryp	otography	, www
			poli	cies an	d emai	l secur	ity.							
Course O	utcom	tcomes												
Course O	uttom	tcomes												
On the suc	On the successful completion of the course, students will be able to													
COI	Unde	Jnderstand need for information, application & data security, security Understanding												
	threat	hreats, security policies, laws and standards												
<u> </u>	Analy	U70 600	urity ri	eke du	a to sar	meity t	hraata					Analy	zina	
	Allar	yze sec	unity II	SKS UU		unity t	meats					Anary	Zing	
CO3	Deve	lop sec	ure inf	ormati	on svst	em						Apply	ing	
		r			<b>j</b>								8	
СО-РО М	anning	ar												
	abbiné	5												
	1: Sligł	nt (Low	) 2:	Mode	rate (M	ledium	) 3:	Substa	ntial (l	High)	''-'': Ì	No Corr	elation	
COs						POs							PSOs	5
	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>	PSO1	PSO2
CO1	2	2	3	1	_	3	-	3	_	-	_	2	2	1
CO2	1	3	3	3	2	3	_	1	_	-	_	2	3	2
CO3	3	2	3	3	3	3	_	3	_	_	_	2	3	3
Average	5	<i>–</i>	5	5	5	5		5				<i>L</i>	5	5
Average	2.0	2.3	3	2.3	1.7	3	-	2.3	-	-	-	2.0	2.7	2.0



Detailed (	Contents		
Module	Contents	L (Hours)	T (Hours)
I	Introduction to information systems, Types of information Systems, Development of Information Systems, Introduction to information security, Need for Information security, Threats to Information Systems, Information Assurance, Cyber Security, and Security Risk Analysis.	6	-
п	Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control.	6	-
III	Security Threats -Viruses, Worms, Trojan Horse, Bombs, Trapdoors, Spoofs, E- mail viruses, Macro viruses, Malicious Software, Network and Denial of Services Attack, Security Threats to E-Commerce-Electronic Payment System, e- Cash, Credit/Debit Cards. Digital Signature, public Key Cryptography.	6	-
IV	Developing Secure Information Systems, Application Development Security, Information Security Governance & Risk Management, Security Architecture & Design Security Issues in Hardware, Data Storage & Downloadable Devices, Physical Security of IT Assets, Access Control, CCTV and intrusion Detection Systems, Backup Security Measures.	6	-
V	Security Policies, Why Policies should be developed, WWW policies, Email Security policies, Policy Review Process-Corporate policies-Sample Security Policies, Publishing and Notification Requirement of the Policies. Information Security Standards-ISO, IT Act, Copyright Act, Patent Law, IPR. Cyber Laws in India; IT Act 2000 Provisions, Intellectual Property Law: Copy Right Law, Software License, Semiconductor Law and Patent Law.	6	-
	Total	30	-
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcor gram Specific Outcomes	nes,	
Suggested	Books/References:		
1	Charles P. Pfleeger, Shari Lawerance Pfleeger, "Analysing Computer Security", Education India.	Pearson	
2	V.K. Pachghare, "Cryptography and information Security", PHI Learning Private India.	e Limited	,Delhi
3	Dr. Surya Prakash Tripathi, Ritendra Goyal, Praveen kumar Shukla ,"Introductio Security and Cyber Law" Willey Dreamtech Press.	n toInfor	mation
4	Schou, Shoemaker, "Information Assurance for the Enterprise", Tata McGraw H	Hill.	
5	CHANDER, HARISH," Cyber Laws And It Protection", PHI Learning Private I	Limited	



Course Ti	itle	FOC			ITIO				πητη		AR			
Course m	do	PCF	$\frac{D}{ET} \frac{20}{20}$	197							JAD			
Cotogory	uc	Drof	LI-20-	$\frac{1}{1}$	Course									
Category Schome er	nd	11010	1 I		Course	- T		D		C	Sama	ator III		
Crodits	liu					1		F 4		$\frac{c}{2}$	Seme			
Decements		Desi	0	1.1	£	0		4		<u>∠</u>	4 -			
(if any)	sites	Desi	с кnow rable –	Know	or nutri ledge c	of basic	chemi	s and IC	ooa cor d math	ematic	its s			
Course		The	objecti	ve of th	nis cour	rse is to	o impa	rt	a man	emane	5			
Objective	S		The	knowl	edge al	hout de	etermin	ing the	proxir	nate co	nstitue	nts of fo	ods	
Objective	5		The The	knowl	edge al	bout an	alvtica	l techn	iques r	related	to huma	an nutrit	ion	
Course O	utcom	es												
On the successful completion of the course, students will be able to														
C01	Prepa	Prepare the samples of different kinds of foods for subsequent analysis Applying												
CO2	Deter	ermine the proximate constituents of foods Evaluating												
<u> </u>	Analy	aluza nutritional status using techniques of nutritional anthronometry Analyzing												
003	Anary	aryze nutritional status using techniques of nutritional anthropometry Analyzing												
CO4	Evalu	valuate micro nutrients, cholesterol, sugar, total and differential count Evaluating												
	etc by	apply	ing bio	chemi	cal and	clinica	l test n	nethods	s for ur	ine, blo	od	Liturat	uing	
	and s	erum te	ests							-, -				
CO5	Evalu	ate ene	ergy va	lue in a	a food s	sample	using	bomb c	alorim	eter		Evalua	ting	
			0.			1	U						U	
СО-РО М	apping	g												
00101		9												
	1: Sligh	nt (Low	/) 2:	Mode	rate (M	ledium	) 3:	Substa	ntial (l	High)	"-": I	No Corr	elation	
COs						POs							PSOs	6
	<b>PO1</b>	PO2	PO3	PO4	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	<b>PO12</b>	PSO1	PSO2
CO1	2	-	-	-	2	-	-	-	-	-	-	-	1	2
CO2	3	2	3	2	2	3	-	-	-	-	-	-	3	3
CO3	1	2	3	2	2	3	-	-	-	-	-	-	2	3
CO4	2	2	3	3	3	3	-	-	_	-	-	2	2	3
CO5	1	3	3	3	1	3	-	-	-	-	-	-	3	3
Average	1.8	1.8	2.4	2	2	2.4	-	-	-	-	-	0.4	2.2	2.8



List of Pr	ractical
S.N.	Practical
1	Sampling requirements, procedures and methods.
2	Determination of moisture content of foods by oven drying and distillation methods.
3	Determination of Total and Acid insoluble ash content in foods.
4	Determination of Crude fat content by solvent extraction methods in foods.
5	Determination of crude Protein by Kjeldhal Lowry methods.
6	Determination of reducing and total sugar content in foods.
7	Determination of crude fibre content in foods.
8	Nutritional anthropometry - Standards for reference – WHO Growth Charts from birth to 18
	years, Body Mass Index and reference value
9	Techniques of measuring height, weight, head, chest and arm circumference, waist to hip ratio,
	skin-fold thickness
10	Calculation of percent Body fat using skin fold calipers
11	Normal weight, underweight and obesity classification based on percent body fat and BMI of
	individuals, Protein Energy Malnutrition in children, Chronic Energy deficiency in adults
12	Biochemical and Clinical tests/methods: urine, blood and serum tests for micro nutrients,
	cholesterol, sugar, total and differential count etc.
13	Determination of energy value; Bomb Calorimeter
L: Lectu	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Pro	ogram Specific Outcomes
Referenc	e Books and Suggested Readings:
S.N.	
1	Laboratory Manual
2	BIS and AOAC Methods of Food analysis
3	"Hand Book of analysis and quality control for fruit and Vegetable Products". Il dedition. Tata McGraw-Hill Publishing Company Ltd. New Delhi
4	Pomeranz, Y (Ed.) (2013) Food analysis: theory and practice. Springer Science & Business
•	Media.
5	James, C. S. (Ed.). (2013). Analytical chemistry of foods. Springer Science & Business Media.
6	Nielsen, S. S. (2017). Food analysis laboratory manual. Springer.



Course Ti	itle	BASIC AND FOOD MICROBIOLOGY LAB														
Course co	de	PCF	ET-204	188												
Category		Profe	essiona	l Core	Course	e										
Scheme a	nd		L			Т		Р		С	Seme	ester III				
Credits			0			0		4		2						
Pre-requi	sites	Basi	c know	ledge o	of food	micro	biology	/								
(if any)		Desi	rable –	Know	ledge o	of basic	: biolog	gy								
Course		The	objecti	ve of th	nis cou	rse is to	o impai	rt								
Objective	S		The	knowl	edge to	o utilize	e labora	atory te	echniqu	les to d	etect, q	uantify,	and iden	ntify		
			mic	roorgai	nisms i	n foods	S									
		The knowledge of preparation of media and sterilization techniques														
Course O	Dutcomes															
On the suc	successful completion of the course, students will be able to															
	uccession completion of the course, students will be able to															
CO1	Demo	ionstrate the microscope parts and its functions of the microscopes Applying														
	and v	viewing microorganisms using with/ without staining techniques														
CO2	Isolat	late microorganisms by using specialized techniques Applying														
~~~																
CO3	Identi	entify of different pathogenic microbes Analyzing														
<u> </u>	Duran			1	4		. 1					A	•			
C04	Prepa	ire med	lia and	apply s	steriliza	ation te	echniqu	les				Apply	ing			
CO5	Exam	nine not	table w	ater mi	icrobio	logical	lv					Evalua	nting			
	LAdi	nne po	uoie w			iogical	ll y					Lvalue	ung			
	annin	ar														
CO-FO M	lapping	S														
	1: Sligh	nt (Low	<i>i</i>) 2:	Mode	rate (M	ledium	a) <u>3</u> :	Substa	ntial (1	High)	''-'': N	No Corr	elation			
COs			,		,	POs	,			<u> </u>			PSOs	5		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2	3	2	-	-	-	-	-	-	-	3	3		
CO2	3	2	3	2	2	3	_	_	_	_	_	_	3	3		
<u> </u>		-			-								2			
	1	2	3	2	2	3	-	-	-	-	-	-	3	3		
	2	2	3	3	3	3	-	-	-	-	-	-	3	3		
CO5	1	3	3	3	1	3	-	-	-	-	-	-	3	3		
Average	1.8	2.2	2.8	2.6	2	2.4	-	-	-	-	3					

List of Pi	ractical
S.N.	Practical
1	Microscope its parts and utility in identification and differentiation of bacteria, yeast and mold.
2	Familiarization with common techniques for handling pure culture serial dilution, Inoculation, slide preparation incubation, counting etc.
3	Micrometry and determination of size of different microbes.
4	Simple and differential staining of microorganisms and their examination.
5	Direct total, viable, and non-viable count of microorganisms in milk.
6	Preparation and sterilization of media and glassware for microbial counts.
7	Determination of Standard Plate Count (SPC) in natural and/or processed foods.
8	Microbiological examination of some selected natural and processed foods.
9	Microbiological examination of potable water: Total and coliform count.
10	Enumeration of coliform organisms in some selected processed foods.
L: Lectu	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Pro	ogram Specific Outcomes
Referenc	e Books and Suggested Readings:
S.N.	
1	H. W. Selley Jr. and Paul J. Van- Microbes in action
2	Frazier W. C. & Westhoff D.C- Food Microbiology
3	Refai M. K Manual of Food Quality Control- Microbiological Analysis
4	Harrigan, W. F. (1998). Laboratory methods in food microbiology. Gulf professional publishing.
5	Patel, P. (Ed.). (1994). Rapid analysis techniques in food microbiology. Springer Science & Business Media.
6	Tortorello, M. L., & Gendel, S. M. (1997). Food Microbiology and Analytical Methods: New Technologies. CRC Press.
7	Garg, N., Garg, K. L., & Mukerji, K. G. (2010). Laboratory manual of food microbiology. IK International Pvt Ltd.
8	Yousef, A. E., & Carlstrom, C. (2003). Food microbiology: a laboratory manual. John Wiley & Sons.
9	Erkmen, O. (2021). Microbiological analysis of foods and food processing environments. Academic Press.
10	Da Silva, N., Taniwaki, M. H., Junqueira, V. C. A., de Arruda Silveira, N. F., Okazaki, M. M., & Gomes, R. A. R. (2018). Microbiological examination methods of food and water: a laboratory manual. CRC Press.

Course Ti	tle	NUN	AERIC	CAL M	ETHC	DDS A	ND CO)MPU'	TER F	PROG	RAMM	ING			
Course co	de	ESM	IA-249	1		2012									
Category		Engi	neering	g Scien	ce Cou	irse									
Scheme an	nd		L			Т		Р		С	Seme	ester IV			
Credits			2			0		0		2					
Pre-requi	sites	Prog	Programming in C												
(if any)		Desirable – Knowledge of Mathematical preliminaries.													
Course		The objective of this course is to impart													
Objective	S	•	Knowledge to evaluate basic computational errors												
		•	 Knowledge to understand algorithms and flow chart of the programs Knowledge to understand and implement C programming 												
		•	Knowledge to understand and implement C programming												
Course O	utcom	es													
On the suc	cessfu	l comp	letion of	of the c	ourse.	student	ts will l	be able	to						
		- • • • • • • • • • • • • • • • • • • •			o										
CO1	Und	erstand	l basics	s of C &	& C++	and ap	ply it to	o simpl	e prog	rams		Applyi	ing		
	TT 1			.1	1.01	1 .									
CO2	Und	erstand	l algori	thms a	nd flow	v charts	8					Unders	standing		
CO3	Solv	ve diffe	rent int	ernola	ion ex	tranola	ation d	ifferen	tial equ	ations	nartial	Applvi	ng		
000	diffe	erential	equati	ons and	d algeb	ra equa	ations,	numeri	cal into	egratio	n and	1	B		
	simu	ultaneo	us linea	ar equa	tions.	1	,			U					
CO4	Prep	are sin	ple pro	ogram	in BAS	SIC/PA	SCAL					Applyi	ng		
~~~										-					
CO5	Desi	ign sim	ple cor	nputer	progra	ms wit	h selec	ted exa	amples	from		Applyi	ing		
	elect	trical/II	lechan		11/chen	incar er	ngineer	ing.							
~ ~ ~ ~ ~ ~															
СО-РО М	apping	g													
	1 · Slioł	ht (Low	2	Mode	rate (N	ledium	) 3.	Substa	ntial (]	High)	"_"· N	No Corr	elation		
COs			) _	1120000		POs	.)				• •	10 0011	PSOs	5	
	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>	PO11	<b>PO12</b>	PSO1	PSO2	
CO1	3	2	3	1	3	-	-	-	-	-	-	-	1	1	
CO2	3	2	3	2	2	-	-	-	-	-	-	-	1	1	
CO3	3	2	3	3	3	-	-	-	-	-	_	-	2	2	
CO4	3	1	2	2	1	-	-	-	-	-	-	-	1	1	
CO5	2	3	3	3	3	-	-	-	-	-	-	-	1	1	
Average	2.8	2	2.8	2.2	2.4	-	-	-	-	-	-	-	1.2	1.2	



Mad-la		Contonta	T	m
Module		Contents		
т	C Language and C + Language	. Overview structure of C and C programs	(Hours)	(Hours)
1	charter set, key words, identifier operators, expressions, control Simple programs.	structures, arrays, functions, pointers, etc.	0	_
П	Algorithms and flow charts. Int and extrapolation, solution of equations and algebra equa simultaneous linear equations.	troduction to numerical methods, Interpolation differential equations and partial differential ations. Numerical integration solution of	8	-
III	Elements of BASIC/PASCAL/C	C++ oriented programming.	4	-
IV	Control and input - output sta subroutines	tements, subscripted variables, functions and	4	-
V	Writing simple computer pro examples from electrical/mechan	grams in BASIC/PASCAL/C/C++. Selected nical/civil/chemical engineering.	6	-
	Total		30	-
L: Lectur	e, T: Tutorial, P: Practical, C: Crec	lits, CO: Course Outcomes, PO: Program Outcor	nes,	
PSO: Pro	gram Specific Outcomes		,	
Suggested	Books			
S.N.	AUTHOR	TITLE		
1	Rajaraman V	Computer Oriented Numerical Methods, Pearson	Education	1
2	Sastry S. S.	Introductory Methods of Numerical Analysis, Pea	urson Edu	cation.
3	Grewal B. S.	Numerical methods in Engineering and Science		
4	Manish Goyal	Computer Based Numerical & Statistical Technique	ues.	
5	Jeri R. Hanly, Elliot B. Koffman	Problem Solving and Program Design in C		



Course Ti	tle	PRO	CESS	CAL	CULA	<b>FIONS</b>	5													
Course co	de	ESC	H-2492	2																
Category		Engi	neering	g Scien	ce Cou	irse														
Scheme an	nd		L			Т		Р		С	Seme	ester IV								
Credits			2			1		0		3										
Pre-requi	sites	None	e.																	
(if any)		Desi	rable –	Know	ledge o	of basic	physic	es, cher	nistry	and ma	themati	cs								
Course		The objective of this course is to impart																		
Objective	S	•	• The knowledge about the behavior of gases, liquids and solids and basic calculation																	
			techniques. The knowledge on laws of chemistry and its application to solution of mass and																	
		• The knowledge on laws of chemistry and its application to solution of mass and energy balance problems																		
Course	utcom	06	ener	gy Dala	ance pr	oblem	8													
Course O	utcom	65																		
On the suc	cessful	essful completion of the course, students will be able to																		
C01	Unde	rstand	the fur	ndamer	tals of	units a	and stoi	chiom	etric ec	quation	s and	Under	standing							
	perfo	orm unit conversions and basic chemical calculations																		
CO2	Unde	rstand t	the fun	damen	tals of	ideal g	as beha	avior, c	oncept	s of hu	midity	Under	standing							
	and s	aturatic	n																	
~~~	~ 1																			
CO3	Solve	the pro	oblems	related	d to gas	ses, vaj	pours, l	numidi	ty and	saturati	on	Apply	ing							
<u> </u>	Calva		al b al a		- h 1 - m - a	her dar		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<u>al nala</u> 4		A								
C04	for di	forent	al Dala	nce pro	Diems	by dev	elopin	g main	ematic	al relat	ions	Apply	ing							
	101 01	nerent	chenn	car pro	113313															
C05	Solve	energy	z halan	ce proł	lems h	w deve	loning	mathe	matica	l relatio	ons for	Apply	inσ							
005	differ	ent che	mical	process	ses	y ueve	Joping	mane	manca	I ICIAII	115 101	rippiy	ΠĘ							
		••••																		
	Ionnin	a																		
CO-PO M	apping	g																		
	1: Sligh	nt (Low	() 2:	Mode	rate (N	Iedium) 3:	Substa	ntial ()	High)	"-": N	No Corr	elation							
COs			,			POs	/		(<u> </u>			PSOs	6						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2						
CO1	2	2	2	1	-	-	-	-	-	-	-	-	2	1						
CO2	3	3	2	2	-	2	_	_	-	-	-	-	3	3						
CO3	3	3	3	3	_	3	-	-	-	-	_	_	3	3						
CO4	3	3	3	3	-	3	-	-	-	-	-	-	3	3						
CO5	3	3	3	3	-	3	-	-	-	-	-	-	3	3						
Average	2.8	2.8	2.6	2.4	-	2.2	-	-	-	-	-	-	2.8	2.6						

Detailed C	Contents		
Module	Contents	L (Hours)	T (Hours)
I	Units their dimensions and conversions, Mass and volume relations, Stoichiometric and composition relations, Concept of mole, mole fraction, composition of mixtures of solids, liquids and gases, Concept of Normality, Molarity, Molality and ppm.	6	3
II	Ideal gas law, Dalton's Law, Amagat's Law, and Average molecular weight of gaseous mixtures. Vapour Pressure: Effect of temperature on vapour pressure, Vapour pressure plot (Cox chart), Vapour pressures of miscible and immiscible liquid and solutions, Raoult's Law and Henry's Law.	6	3
III	Humidity and saturation, Relative Humidity and percent saturation, Dew point, Dry and Wet bulb temperatures, Use of humidity charts for engineering calculations.	6	3
IV	Material Balance: Material balances for systems without chemical reactions- unit operations like distillation, crystallization, evaporation, absorption, drying, mixing, extraction etc. Material balances for systems with chemical reactions- Concept of excess and limiting reactants, degree of completion, conversion, selectivity and yield. Recycling operations, analysis of systems with by-pass, and purge.	6	3
V	Energy Balance: Heat capacity of gases, liquids and solutions, Heat of fusion and Vaporization. Steady state energy balance for systems with and without chemical reactions. Calculations and application of heat of reaction, combustion, formation, neutralization and solution. Enthalpy-concentration charts. Combustion of solids, liquids and gaseous fuels, Calculation of theoretical and actual flame temperatures.	6	3
	Total	30	15
L: Lectur	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcom	nes,	
PSO: Pro	gram Specific Outcomes		
Suggested	Books/References:		
S.N.	References:		
1	Himmelblau, D.M. "Basic Principles & Calculations in Chemical Engineering", 6 thed (1996).	.Prentice	Hall
2	Felder & Rousseau, R.W. "Elementary Principles of Chemical Processes ", 3 edition	. John Wi	ley.
3	Bhatt., B.I. and Vora S.M. "Stoichiomerty" IInd edition, Tata McGraw Hill (1984) R	eference	Books
4	Hougan D. A., Watson K.M. & Ragatz R. A. "Chemical Process Principles" Asia Pu	blishing I	House
5	Luben W.L. and Wenzel, L.A. "Chemical Process Analysis Mass and Energy Balance	e" Prentic	e Hall
6	Narayanan, K. V., & Lakshmikutty, B. (2016). Stoichiometry and process calculation Pvt. Ltd	ons. PHI	Learning

Course Ti	tle	CHI	EMICA	AL EN	GINE	ERINO	G THE	RMOI	DYNA	MICS					
Course co	de	ESC	ESCH-2493												
Category		Engi	neering	g Scien	ce Cou	irse									
Scheme an	nd		L			Т		Р		С	Seme	ester IV			
Credits			2			0		0		2					
Pre-requi	sites	Kno	wledge	of bas	ic phys	sics			•						
(if any)															
Course		The	The objective of this course is to impart												
Objective	S	•	• The knowledge of theory and applications of classical thermodynamics,												
			thermodynamic properties and equations of state The knowledge of methods used to describe and predict phase equilibric												
0	4	•	• The knowledge of methods used to describe and predict phase equilibria												
Course O	utcom	es													
On the suc	cessful	l comp	letion of	of the c	ourse,	student	ts will l	be able	to						
CO1	Unde	rstand	the bas	ic of th	ermod	ynamio	es and t	he tern	ninolog	gy asso	ciated	Under	standing		
	with e	engineering thermodynamics.													
	TT 1	. 1	-												
CO2	Unde	rstand	the the	rmodyi	namic p	propert	ies of s	ubstan	ces in g	gas or I	iquid	Under	standing		
	state	of ideal and real mixture													
C02	IInda	natan d										Ludan	at an din a	-	
COS	Unde	rstand	munice	ompone	ent syst	lem						Unders	standing		
CO4	Unde	rstand	and an	nlv the	knowl	edge of	fnhase	equilit	ria in	two-		Apply	ino		
001	comp	onent a	and mu	lticom	onent	svstem	i pilase 18	equine	Jiiu III			¹ ppiy	1115		
	I I I					J									
CO5	Unde	rstand	chemic	al equi	libriun	1						Under	standing		
				1									U		
СО-РО М	annin	σ													
00101	apping	5													
	1: Sligh	nt (Low	<i>i</i>) 2:	Mode	rate (M	Iedium) 3:	Substa	ntial (l	High)	''-'': N	No Corr	elation		
COs						POs							PSOs	5	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C01	3	2	1	_			_		_	_		_	1	2	
<u> </u>	3	2	1										1	2	
02	3									2					
CO3	3	2	1	-	-	-	-	-	-	-	-	-	1	2	
CO 4	3	2	2 1 1 1 2												
CO5	3	3	2	2	-	-	-	-	-	-	-	-	1	2	
Average	3	2.2	1.2	0.6	-	-	-	-	-	-	-	-	1.6	2	

	Contents	1	
-		(Hours)	(Hours
1	Basic Concept The first law and conservation of energy. Applications to steady, nonsteady flow and other engineering problems. The second law. Applications to engineering problems relating to equilibrium, maximum and minimum work.	6	-
II	Properties of Pure Substances Changes in thermodynamic properties and their inter-relationships. The ideal gas. Fugacity and Fugacity coefficients for real gases.	6	-
III	Multicomponent System Partial molal properties. Mathematical models for the chemical potential. Ideal and non- ideal solutions. Activity and activity coefficients. The Gibbs Duhem equations. Excess properties of mixtures.	6	-
IV	Phase Equilibria Criteria for equilibrium between different phases in Multicomponent nonreacting systems. Applications to systems of engineering interest, particularly to vapour – liquid equilibria and solubility	6	_
V	Chemical Equilibrium The equilibrium constant and the variation of yield in chemical reactions with pressure, temperature and composition.	6	-
	Total	30	-
L: Lecture PSO: Prog	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcom gram Specific Outcomes	nes,	
Suggested	Books/References:		

S.N.	AUTHOR	TITLE
1	J.M. Smith and H.C. Van	Introduction to Chemical Engineering Thermodynamics
	Ness	
2	Y.V.C. Rao	Chemical Engineering Thermodynamics

3	Sandler, S. I. (2017). Chemical, biochemical, and engineering thermodynamics. John Wiley & Sons.
4	Elliott, J. R., Lira, C. T., & Lira, C. T. (2012). Introductory chemical engineering thermodynamics (Vol.
	668). Upper Saddle River, NJ: Prentice Hall.

Course Ti	tle	FOC	DD CH	EMIS'	TRY																
Course co	de	PCFI	ET-249	4																	
Category		Profe	essiona	l Core	Course)															
Scheme an	ıd		L			Т		Р		С	Seme	ester IV									
Credits			3			0		0		3											
Pre-requis	sites	Desi	rable–	Knowl	edge of	f chem	ical con	nstituer	nts of f	oods ar	nd chen	nistry									
(if any)																					
Course		The	The objective of this course is to impart																		
Objectives	5	•	• knowledge about the chemistry underlying the properties and reactions of variou																		
			food components																		
		•	• knowledge about the important chemical/biochemical reactions amongst various food																		
			components and how they influence food quality																		
		٠	• knowledge about the physical, chemical, thermal properties of various food																		
			constituents																		
Course Or	utcom	es																			
On the suc	cessful	l comp	letion of	of the c	ourse,	student	ts will	be able	to												
CO1	Unde	rstand	the imp	oortanc	e of wa	ater for	stabili	ty & qı	uality c	of foods	5	Under	standing								
			r man y i family i family i family i family																		
CO2	Unde	rstand	stand reaction chemistry of carbohydrates, their composition and Understanding																		
	nutrit	ional p	onal properties																		
	F 1	•				. 1															
CO3	Expla	in prop	perties	and rea	actions	of lipic	1s and 1	protein	s durin	g stora	ge and	Unders	standing								
	proce	ssing o	01 1000	and the	eir infit	lence c	on the q	uanty	and pro	operties	s of the										
<u> </u>	Evolo	in over	mion	f than	anin ale		faamn	oundai	influon	oing of	lor	Under	atonding								
004	Expla	avor o	f food <i>i</i>	on the fi	lalli Cla	usses of	on imr	ounus i	source	cing co	aming	Unders	standing								
	and m	ninerals	$\sin foo$	anu nav M		vieuge	on mi	Jonani	source	5 01 VII	amms										
C05	Demo	nstrate	nroce	sses tal	zing nl	ace dur	ing sto	rage of	muse	e tissu	e and	Applyi	nσ								
000	their	effect of	on qual	itv asp	ects of	food	1115 510		muser	10 1155U	e una	rippiyi	115								
	annin	•	1	<u> </u>								1									
CO-FO M	appinį	5																			
	1:Slig	ght(Lov	w) 2	:Mode	rate(M	edium)	3:5	Substan	tial(Hi	gh)	"-": No	o Correl	ation								
COs			,			POs				<u> </u>			PSO	5							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2							
C01	3	1	3	1	-	2	-	-	-	_	-	1	3	3							
CO2	3	2	3	2		2						1	3	3							
CO3	3	2	3	$\frac{2}{2}$	_	2	_														
CO4	3	2	3	$\frac{2}{2}$		2	_		_			1	3	3							
CO5	3	2	3	2		2		_	_		_	1	3	3							
	5	5	5	5	I –	4	I –	- 1	- 1	-	- 1	1 1	5	5							

Module	Contents		L	Т
I	(a) Water in Foods: Structure. Properties, I stability.	nteractions, Water activity, and	(Hours) 9	(Hours
	(b) Carbohydrates: Functions, Reactions and p carbohydrate, Selection of Natural or Modified into processed food.	properties of simple and complex d carbohydrates for incorporation		
II	Lipids: Consistency of commercial fats Lipe Decomposition and effect of ionizing radiatio of oils and fats, Role of food lipids in flavor, I modified fats.	olysis, Auto oxidation, Thermal n, Refining of oils, Modification Nutritional aspects of natural and	9	-
III	Proteins: Nutritive and supplementary val reactions and interactions of amino acids an implications, Functional properties of food proteins in processing and storage and its impli	ue of food protein, Chemical d proteins, Denaturation and its proteins, Modification of food ications.	9	-
IV	Vitamins, Minerals, Pigments and Flavours: and fat soluble vitamins, Chemical prop bioavailability, Enrichment and fortification. their retention in processed foods. Flav Development of process and reaction flavour v	Chemistry and stability of water perties of minerals and their Natural pigments in foods and voring constituents in foods, rolatiles.	9	-
V	Characteristics of muscle tissues, Milk, Egg an approach to food chemistry.	nd edible plant tissues, Integrated	9	-
	Total		45	-
L: Lecture PSO: Prog	e, T: Tutorial, P: Practical, C: Credits, CO: Cours gram Specific Outcomes	se Outcomes, PO: Program Outcor	nes,	1
Suggested	Books/References			
S.N.	AUTHOR	TITLE		
1	O. R. Fennema	Food Chemistry		
2	N. Shakuntala Manay & M. Shadaksharaswamy	Food Facts and Principles		
3	C. Gopalan	Nutritive value of Indian Foods		
4	L.H. Meyer	Food Chemistry		
5	Lehnninger	Principles of Biochemistry		
6	S.N. Mahindru	Food Additives		
7	INN Potter	Food Science		

Course Ti	tle	FOC	DD AD	DITIV	ES										
Course co	de	PCF	ET-249	95											
Category		Profe	essiona	l Core	Course)									
Scheme an	nd		L			Т		Р		С	Seme	ester IV			
Credits			3			0		0		3					
Pre-requi	sites	None	e.												
(if any)		Desi	rable –	Know	ledge o	of basic	food p	process	ing me	thods/c	operatio	ns			
Course		The	objecti	ve of th	nis cou	rse is to	o impai	rt							
Objective	S	•	 The knowledge about the role of 100d additives in 100d quality and safety. The knowledge of additives and ingredients that are relevant to food industry for 												
		•	improving shelf life, processing and sensory attributes.												
Course O	utcom	es	mproving shen me, processing and sensory auributes.												
On the suc	cessful	sful completion of the course, students will be able to													
C01	Undo	retand	the has	ic defi	nitions	functi	on and	annlia	ations	of food	1	Apply	ina		
	addit	ives su	ch as a	cids h	nuons ase hut	ffer sa	lt chel	applie ating a	oents i	mastics	ntorv	дрргу	mg		
	and d	lifferen	t sweet	eners	150, 001	1101, 5u	it, ener	ating a	gents, i	mustree	uory				
CO2	Unde	erstand	the app	olicatio	ns of fo	ood ad	ditives	(emuls	ifier &	stabili	zer,	Apply	ing		
	anti-c	caking,	thicker	ners, fi	rming,	flour b	leachii	ng and	bread i	improv	ers) for	11.2	U		
	main	taining	and en	hancin	g the c	haracte	eristic a	and stru	icture i	in bake	ry				
	produ	ict.													
CO3	Unde	erstand	the app	olicatio	n of an	ti-micr	obial a	igent, c	lass I &	& II		Apply	ring		
	prese	rvative	s for in	nprovii	ng the s	stabilit	y and s	helf lif	e of fo	od.					
CO4	Unde	erstand	the ap	oplicati	on of	colora	nts, fla	avoring	g agent	ts and	related	Apply	ring		
	subst	ances,	Clarify	ving ag	ents. C	Gases a	nd Pro	pellant	ts. Tra	cers an	d other				
	addit	ives													
CO5	Unde	erstand	the rele	evant la	aws and	d regul	ations	associa	ted wit	th food		Under	standing		
	addit	ives													
СО-РО М	lapping	g													
	1. Sligh	at (Lou	.)) .	Mode	roto (N	Indium) 2.	Subata	ntial ((Jigh)	·· ››. N	Jo Corr	alation		
COs	1. Siigi		/) 2.	Moue		POs) 5.	Subsia	unuar (I	(ingii)	1			2	
0.05	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	2	-	3	-	-	-	-	-	-	3	3	
CO2	3	2	2	2	-	3	-	-	-	-	-	_	3	3	
CO3	3	2	2	2	-	3	-	-	-	-	-	-	3	3	
CO4	3	2	1	2	-	3	-	-	-	-	-	-	3	3	
CO5	1	1	1	1	-	3	1	1	-	-	-	-	3	3	
Average	2.6	1.8	1.4	1.8	-	3	0.2	0.2	-	-	-	-	3	3	

I Def chei non II Ant thic III Ant thic III Col Proj add	initions, uses and fun ating/sequestering ag nutritive sweeteners, Po- ioxidants, Emulsifying keners, Firming agents i-microbial agents / Cla prants, Flavoring agent cellants. Tracers and ot atives. Relevant laws ar	and stabilizing agents, Anti-caking agents, and stabilizing agents, Anti-caking agents, . Flour bleaching agents and Bread improvers. ass I and Class II preservatives as per PFA Act. ts and related substances, Clarifying agents. Gases and ther additives. Scope and application standards of food and regulations.	(Hours) 12 12 9 12	
I Def chei non II Ant thic III Ant thic III Col Proj add	initions, uses and fun ating/sequestering ag nutritive sweeteners, Pe ioxidants, Emulsifying keners, Firming agents i-microbial agents / Cla prants, Flavoring agent pellants. Tracers and ot tives. Relevant laws ar	and stabilizing agents, Anti-caking agents, and stabilizing agents, Anti-caking agents, . Flour bleaching agents and Bread improvers. ass I and Class II preservatives as per PFA Act. ts and related substances, Clarifying agents. Gases and ther additives. Scope and application standards of food and regulations.	12 12 9 12	-
IIAnt thicIIIAntIVCol Proj addIVTot	ioxidants, Emulsifying keners, Firming agents i-microbial agents / Cla prants, Flavoring agent pellants. Tracers and ot tives. Relevant laws ar	and stabilizing agents, Anti-caking agents, . Flour bleaching agents and Bread improvers. ass I and Class II preservatives as per PFA Act. as and related substances, Clarifying agents. Gases and ther additives. Scope and application standards of food and regulations.	12 9 12	-
III Ant IV Col Pro add Tota	i-microbial agents / Cla prants, Flavoring agent pellants. Tracers and ot tives. Relevant laws ar	ass I and Class II preservatives as per PFA Act. as and related substances, Clarifying agents. Gases and ther additives. Scope and application standards of food and regulations.	9	-
IV Col Prop add Tota	prants, Flavoring agent pellants. Tracers and ot tives. Relevant laws ar	as and related substances, Clarifying agents. Gases and ther additives. Scope and application standards of food and regulations.	12	-
Tota	-1		l	
	1		45	-
L: Lecture, T: 7	utorial, P: Practical, C:	: Credits, CO: Course Outcomes, PO: Program Outcom	nes.	
PSO: Program	Specific Outcomes		,	
Suggested Book	s/References:			
S.N. AU	THOR	TITLE		
1 Mic	hael and Irene Ash	Handbook of Food Additives		
2 Geo	rge A Burdock	Food and color additives		
3 Vict	or O. Sheftel	Indirect food additive and polymer		
4 S N	Mahindru	Food additive		
5 D. E	aines, R Seal	Natural food additives, ingredient and Flavorings))	

7 Msagati, T. A. (2012). The chemistry of food additives and preservatives. John Wiley & Sons.

Course T	Title	FO	OD EN	IGINE	ERIN	G- I								
Course c	ode	PCF	FET-249	96										
Category	7	Pro	fession	al Core	e Cours	se								
Scheme a	and		L			Т	F)		С	Sem	ester IV	1	
Credits			3			0	0)		3				
Pre-requ (if any)	isites	Bas	ic knov	vledge	of phy	sics an	d math	ematic	S					
Course		This	course	is aim	ed to ir	npart								
Objectiv	es	•	The	knowle	dge of	fluid f	low in	food pi	rocess of	engine	ering.			
		•	Core	knowl	edge of	f mater	ial han	dling e	quipm	ent and	l separa	tion pro	cesses	
Course (Outcomes													
On the su	lccessfi	ul com	pletion	of the	course,	, studer	nts will	be abl	e to					
CO1	Exp	lain the	e princi	ples of	flow c	of fluid	s and it	s prope	erties.			Unde	rstanding	5
CO2	Und	Understand various food material handling equipment and their Applying												
	applications													
~~~	Independent designs and monthly a sinterial of an dimensional designs and monthly a sinterial of a section of the section of t													
CO3	Understand types, designs and working principle of grading, sorting, Applying													
	cleaning and size reduction equipment and their applications in food													
<u> </u>	proc	troto th		n a tam	ain alac	( a ait	otina 1	maadir	a hla	dina	and	Apply	vina	
CO4	hom	strate tr	ie mixi	ng tern	linolog	gy (agit	ing ou		ig, diei	iding, a	and	Арріу	/ing	
	поп	logemz	ing) an	iu appl	ication		ing eq	uipinen	ιι.					
CO5	Illus	strate th	ne filtra	tion te	rminol	ogy and	d appli	cation of	of filtra	tion		Appl	ying	
	equi	pment	in food	l proce	ssing.									
CO-PO N	Aappir	ng												
	1 · Sligł	nt (Low	$() 2^{-1}$	Mode	rate (N	ledium	) 3.	Substa	ntial (I	High)	"_"· ]	No Corr	elation	
COs						PO	s			8)			PSC	)s
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	<b>PO1</b>	<b>PO1</b>	PSO1	PSO2
	1	2	3	4	5	6	7	8	9	10	1	2		
CO1	3	2	3	1	2	3	-	-	-	-	2	-	3	3
CO2	2	2	3	2	1	3	-	-	-	-	2	-	3	3
CO3	3	3	3	2	2	3	-	-	-	-	2	1	3	3
CO4	2	3	3	2	1	2	-	-	-	-	3	2	3	3
CO5	3	3	2	2	2	2	-	-	-	-	3	1	3	3
Average	2.6	2.6	2.8	1.8	1.6	2.6	-	-	-	-	2.4	0.8	3	3



Detailed (	Contents		
Module	Contents	L (Hours)	T (Hours)
I	Properties of fluids, Flow rate and pressure drop relationships for Newtonian fluids flowing through pipe, Characteristics of Non- Newtonian fluids - generalized viscosity coefficient and Reynolds number, Flow of compressible fluid, Flow measurement, Pumps and compressors; Friction losses in pipe line	9	-
п	Material handling - Theory, classification of various material handling equipment's conveyors, elevators, trucks, cranes and hoists. pneumatic conveying, Conveyance of food grain and powder in screw and vibratory conveyors. Design of conveyor belts. Methods of dust collection, Cyclones, Electrostatic precipitators.	9	-
III	Cleaning - Types, aims of cleaning, methods of cleaning- dry, wet and combination methods. Dry cleaning methods: screening, aspiration, magnetic cleaning and abrasive cleaning. Wet cleaning methods: soaking, spray washing, flotation washing and ultrasonic washing. Sorting and Grading - Advantages of sorting and grading, grading factors, methods of sorting and grading. Size Reduction: Reasons/benefits of size reduction, forces used in size reduction, criteria of size reduction, equipment selection, mode of operation of size reduction equipment. Size reduction of solid foods, fibrous foods and liquid foods. Particle size analysis and energy requirement in size reduction of solid foods; Homogenization of milk fat in high pressure homogenizer; milling of grains and recovery of various products	9	-
IV	Mixing - Mixing terminology (agitating, kneading, blending, and homogenizing). Mixing equipments - mixers for liquids of low or moderate viscosity (Paddle agitators, turbine agitators and propeller agitators), mixers for high viscosity pastes (Pan mixer, horizontal mixer and dough mixer), mixers for dry solids (tumbler mixer and vertical screw mixer), effects of mixing on foods. Power consumption and efficiencies	9	-
V	Filtration- Filtration terminology (feed slurry, filtrate, filter medium, filter cake and filter), filtration methods/equipments - pressure filtration, vacuum filtration, and centrifugal filtration. Expression - Factors affecting efficiency of expression, methods of expressing the liquid from solid-liquid food system - hydraulic pressing, roller pressing and screw pressing. Centrifugation - sedimentation and sedimentation theory; solid-liquid separation, different types of centrifuges. Fluidization, flow through packed beds/ flow distribution, pressure drop calculation	9	-
	Total	45	-
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outco gram Specific Outcomes	omes,	



Suggested	l Books/References	
S.N.	AUTHOR	TITLE
1	J.G. Brennan	Food Engineering Operations
2	R. Paul Singh	Introduction of Food Engineering
3	Heldman, D. R., Lund, D. B.,	& Sabliov, C. (Eds.). (2018). Handbook of food engineering. CRC
	press.	
4	Lozano, J. E., Anon, C., Barbo	osa-Canovas, G. V., & Parada-Arias, E. (2000). Trends in food
	engineering. CRC Press.	
5	Toledo, R. T., Singh, R. K., &	x Kong, F. (2007). Fundamentals of food process engineering (Vol.
	297). New York: Springer.	
6	Hui, Y. H. (Ed.). (2006). Hand	dbook of food science, technology, and engineering (Vol. 149).
	CRC press.	
7	Chakraverty, A., & Singh, R.	P. (2014). Postharvest technology and food process engineering.
	CRC Press.	
8	Yanniotis, S., Taoukis, P., Sto	foros, N. G., & Karathanos, V. T. (Eds.). (2013). Advances in
	food process engineering rese	arch and applications. Springer US.



Course Ti	tle	NUN	<b>AERIC</b>	CAL M	ETHO	DDS A	ND CC	) MPU'	TER P	ROGI	RAMM	ING L	AB.	
Course co	de	ESM	A-2049	7										
Category		Engi	neering	g Scien	ce Cou	irse								
Scheme an	nd		L			Т		Р		С	Seme	ester IV		
Credits			0			0		2		1				
Pre-requi	sites	Basi	c know	ledge	of C/C-	++	•		•					
(if any)														
Course		Obje	ective of	of this o	course	is to in	npart							
Objective	S	•	The k	nowled	lge of <b>(</b>	C/C++ :	for dev	eloping	g nume	erical n	nethod p	program	S	
		•	The k	nowled	lge to u	indersta	and, de	sign an	nd deve	elop va	rious nu	imerical	method	
			proble	ems use	ed in E	ngineer	ring							
Course O	Outcomes													
	ccessful completion of the course students will be able to													
On the successful completion of the course, students will be able to														
CO1	Apply	y the ki	nowled	ge of n	nathem	atics to	o solve	nonlin	ear alg	ebraic		Applyi	ng	
	equat	equation												
	_	•												
CO2	Apply	Apply the knowledge of mathematics to solve linear simultaneous Applying												
	equat	quations												
~~~														
CO3	Desig	Design solution for interpolation formulae Applying												
<u> </u>	Idonti	fy for	mulata	and in	nlama	nt num	orical	lifforor	tiotion	and		Applyi	na	
04	integr	ration	mulate		ipieme	III IIUIII	Cilcal (11110101	manon	anu		Арргуг	ng	
	integr	ution												
CO5	Apply	v the kr	nowled	ge of n	nathem	atics to	o solve	ordina	rv diffe	erential		Applvi	ng	
	equat	ions		8. 01 1			,	0101110						
	-													
СО-РО М	anning	σ												
	abbiné	5												
	1: Sligł	nt (Low	<i>i</i>) 2:	Mode	rate (M	ledium) 3:	Substa	ntial (I	High)	''-'': N	No Corr	elation	
COs						POs							PSOs	5
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	-	-	-	-	-	-	-	2	-	2	2
CO2	3	2	3	-	-	-	-	-	-	-	2	-	3	2
CO3	3	2	3	-	-	-	-	-	-	-	2	-	2	2
CO4	3	3	3	-	-	-	-	-	-	-	2	-	3	2
CO5	3	2	3	-	-	-	-	-	-	-	2	-	2	2
Average	3	2.2	3	-	-	-	-	-	-	-	2	-	2.4	2.0

List of Pra	netical
S.N.	Practical
1	Solution of a single nonlinear algebraic equation by Newton Raphson method.
2	Solution of a single nonlinear algebraic equation by Regula Falsi method.
3	Solution of two simultaneous nonlinear algebraic equation by Newton Raphsonmethod.
4	Solution of linear simultaneous equations by Gauss Jordan method.
5	Solution of linear simultaneous equations by Gauss Elimination method.
6	Solution of linear simultaneous equations by Gauss Seidel and Successive overRelaxation method.
7	Implementation of interpolation formulae.
8	Implementation of least squares approximation of a function.
9	Implementation of numerical differentiation formulae.
10	Implementation of numerical integration formulae.
11	Solutions of single first order ordinary differential equation by 4 th order Runge Kutta method.
12	Solutions of second order ordinary differential equation by 4 th order Runge Kutta method.
13	Solutions of simultaneous first order ordinary differential equation by 4 th order Runge Kutta method.
14	Solution of boundary value problems by finite difference techniques.
L: Lecture	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Pro	gram Specific Outcomes
Reference	Books and Suggested Readings:
S.N.	
1	Chapra, S. C., & Canale, R. P. (2011). Numerical methods for engineers (Vol. 1221). New York: Mcgraw-hill.
2	Epperson, J. F. (2021). An introduction to numerical methods and analysis. John Wiley & Sons.
3	Dahlquist, G., & Björck, A. (2003). Numerical methods. Courier Corporation.

Course Ti	itle	FOC	DD CH	EMIS'	TRY L	AB								
Course co	de	PCF	ET-204	198										
Category		Profe	essiona	l Core	Course	e					-			
Scheme an	nd		L			Т		Р		С	Seme	ester IV		
Credits			0			0		6		3				
Pre-requi	sites	Basic	c know	ledge	of nutri	tion, n	utrients	s and fo	ood coi	nstituer	nts			
(if any)		Desi	rable- l	Knowle	edge of	basic	chemis	try and	l mathe	ematics				
Course		The	objecti	ve of th	nis cou	rse is to	o impai	rt						
Objective	S	•	knowl	edge a	bout	the cho	emistry	under	lying t	the pro	perties	and re	actions o	f various
			food c	ompor	nents									
		•	knowl	edge a	bout tl	ne imp	ortant c	chemic	al/bioc	hemica	l reaction	ons am	ongst vari	ious food
			compo	onents	and ho	w they	influer	nce foo	d quali	ity				
		• knowledge about the physical, chemical, thermal properties of various food												
	constituents													
Course O	Dutcomes													
On the succ	cessful completion of the course, students will be able to													
C01	Demo	Demonstrate various chemical methods for the detection and estimation of Applying												
	chem	chemical constituents in food												
	D	amonstrate the protocole of chemical properties of individual companyate in Archite												
CO2	Demo	emonstrate the protocols of chemical properties of individual components in Applying												
	Toods	bods												
<u> </u>	Dame													
COS	Demo	emonstrate the biochemical analysis in terms of estimation of proximate Analyzing												
	anary	515 01 1	oous											
CO4	Demo	nstrate	the hi	ochem	ical and	alveie i	n terme	ofect	imatio	n of nu	tritional	1	Applying	
04	value	of foo	de une un	ochem		arysis 1		s of est	iniatioi	I OI IIU	unional	L	Apprying	
	value	01 1000	40											
C05	Desig	on carr	vout	record	and an	alvze ti	he resu	lts of c	hemic	alexne	riments		Analyzin	σ
000	preci	selv	y out, I	lecolu	und un	u1y20 ti	ne resu			in expe	ments		7 mary 2m	6
	proor	sery												
	I													
CO-PO M		g sht(Lor		·Moda	roto(M	odium)	2.5	ubstan	tial(U	ab)	""· No	Corrol	lation	
COs	1.511	giii(LOV	N) Z	.Moue			5.0	ouostan	luai(111	gii)	INC	Cone		7
0.03						105							150	,
~~~	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	3	3	2	1	1	3	-	-	-	-	-	2	3	3
CO2	3	3	2	2	1	3	-	-	-	-	-	2	3	3
CO3	3	3	2	2	1	3	-	-	-	-	-	2	3	3
CO4	3	3	2	3	2	3	-	-	-	-	-	2	3	3
CO5	3	3	3	3	2	3	-	-	-	-	2	2	3	3
Average	3	3	2.5	2.5	1.4	3	-	-	-	-	-	2	3	3



List of Pra	netical
S.N.	Practical
1	Analysis of water for potable and food purposes
2	Moisture content in foods in relation to their stability
3	Non-enzymatic browning reactions and its determinations
4	Determination of rate/ extent of hydrolysis of sucrose/starch
5	Determination of free fatty acid content in fats and oils
6	Detection and estimation of oxidative rancidity in fats/oils
7	Determination of heat stability of vitamin C
8	Study of some reactions of proteins
9	Study of some processing changes in proteins
10	Study of some functional properties of proteins
11	Detection / Estimation of some additives in foods
12	Detection/Estimation of adulterants in some foods
L: Lecture	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Prog	gram Specific Outcomes
Reference	Books and Suggested Readings:
S.N.	
1	Weaver, C.M, and J.R. Daniel. "The Food Chemistry Laboratory – A Manual for Experimental
	Foods, Dietetics and Food Scientists." 2nd Edition, CRC Press, 2005
2	ISI hand book of food analysis
3	Hand book of analysis and quality control for fruit and vegetable products, by S. Ranganna, II Ed.,
	Tata McGraw Hill Publishing Co. New Delhi.
4	Official Method of analysis of AOAC



Course Ti	itle	FOOD ENGINEERING-I LAB												
Course co	de	PCFI	ET-2049	<del>)</del> 9										
Category		Profe	essiona	l Core	Course	e			-					
Scheme an	nd		L			Т		Р		С	Seme	ester IV		
Credits			0			0		2		1				
Pre-requi	sites	Knov	wledge	about	the bas	sic food	l engin	eering	operati	ons use	ed in fo	od indu	stry.	
Course		Obje	ective of	of this c	course	is to in	npart ki	nowled	ge abo	ut the				
Objective	S	•	The	knowl	edge al	bout en	gineer	ing prii	nciples	and the	eir prac	tical ap	plications	s in
			vari	ous foc	od proc	essing	operati	ons	1				C'1,	
		reduction and mixing operations .												
Course O	utcom	comes												
Course O	utcom	asserved a second students will be able to												
On the successful completion of the course, students will be able to														
CO1	Solve	Solve the problem related to material and heat balance. Applying												
		Apply various techniques for conting and moding of foods												
CO2	Apply	Apply various techniques for sorting and grading of foods. Applying												
CO3	Apply	Apply techniques for solid and liquid separation												
0.05	Appi	Apply techniques for solid and liquid separation. Applying												
CO4	Expe	riment	to dete	ermine	the par	ticle si	ze anal	ysis fo	r mean	partic	le	Applyi	ing	
	diame	eter.			1			5		1		11.5	C	
CO5	Deter	mine th	ne pow	er cons	sumption	on for r	nixing	of liqu	ids usi	ng diffe	erent	Applyi	ing	
	impel	lers.												
СО-РО М	lapping	g												
	1.01.1	- 4 (T	-) 2	M - 1-		r. 1'	) 2.	C1		T: - 1- )	66 22. N		-1-4	
COs	1: Siigi	IL (LOW	/) Z:	Mode	rate (N		) 3:	Substa	intial (I	Hign)	- : 1	NO COIT		
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2
C01	2	2			2	2	_	_	_	_	2	1	2	2
CO2	3	2	2	_	1	2	_	_	_	_	2	1	3	2
CO3	3	2	2	2	2	3	-	-	-	-	2	-	2	2
CO4	3	3	2	_	3	3	-	-	-	-	3	2	3	2
CO5	3	2	2	1	2	3	-	_	-	_	2	_	2	2
Average	2.8	2.2	1.6	0.6	2.0	2.6	-	-	-	-	2.2	0.8	2.4	2.0



List of Pra	ctical
S.N.	Practical
1	Problems on material balance
2	Problems on heat balance
3	Sorting and grading of foods
4	Particle size analysis for mean particle diameter
5	Study of solid liquid separation
6	Energy requirement for size reduction using different mills.
7	Homogenization
8	Mixing indices for mixing of solids
9	Power consumption for mixing of liquids using different impellers.
10	Solid/Liquid separation by centrifugation/filtration
11	Micro/ultra-filtration
12	Visit to related food industry
L: Lecture	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Prog	gram Specific Outcomes
Reference	Books and Suggested Readings:
S.N.	
1	Laboratory Manual



Course Ti	itle	IND	USTR	IAL E	CONO	MICS	AND	PRIN		SOF	MANA	GEME	NT	
Course co	de	HSM	1HU-34	481	00110									
Category		Hum	anities	, Socia	l Scien	ces inc	luding	Manag	gement					
Scheme an	nd		L	,		Т		P		С	Seme	ester V		
Credits			2			0		0		2				
Pre-requi	sites	None	e.				1							
(if any)		Desi	rable –											
Course		The	objecti	ve of th	nis cou	rse is to	o impa	rt						
Objective	S	•	The	knowl	edge al	bout th	e conce	ept of i	ndustri	al ecor	omics.			
		Basic knowledge of management and organization structure.												
Course O														
Course	utcom	es												
On the suc	cessful	l comp	letion of	of the c	ourse,	student	ts will	be able	to					
001	<b>TT</b> 1	Understand the concept and importance of industrial economics role of Understanding												
COI	Unde	Understand the concept and importance of industrial economics, role of Understanding $x_{1}$												
	macr	acro & micro economics, management principles and money &												
	Dank	anking system briefly												
<u> </u>	Dom	Demonstrate the value skills and functions of monoport and the value of the second sec												
02	Dem	onstrat	e the ro	nes, sk	ms and		IONS OF	manag	ement			Арріу	ing	
CO3	Dem	onstrat	e the al	oility o	f direct	ing, le	adershi	p. lear	ning ar	nd		Apply	ving	
	comr	nunica	ting eff	ectivel	v			p, 10011						
	••••				.)									
СО-РО М	lapping	g												
	1: Sligh	nt (Low	) 2:	Mode	rate (M	Iedium	) 3:	Substa	intial (1	High)	''-'': N	No Corr	elation	
COs			/			POs	/			0 /			PSOs	5
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	1	2	-	2	2	2	1	3	1	3	3	1	1
CO2	_	1	1	_			1	2	3	2	3	3	3	2
CO3	_	1	2		_	2	1	1	2	2	2	2	2	2
	-	1	2	-	-	2	-	1	5	5	5	5	3	2
Average	-	1.0	1.7	-	0.7	1.3	1.0	1.3	3.0	2.0	3.0	3.0	2.3	1.7



Module		Contents	L	Т						
			(Hours)	(Hours)						
Ι	Introduction: Nature and Sig Engineering and Technology and	nificance of economics. Meaning of Science, ad their relationship with economic development.	6	-						
II	Basic Concept: The concept of Supply. Indifference curve anal	f demand and supply. Elasticity of Demand and ysis, Price effect, Income effect and Substitution.	6	-						
III	Money and Banking: Functio Measures to control it. Buviz.,Commercial and Central B	ns of Money. Value of Money, Inflation and rief idea of functions of banking system, anking.	6	-						
IV	Management: Introduction: Det Evaluation of Management tho	6	-							
V	Human Behaviour: Factors of Personality development, Interp	Individual Behaviour, Perception, Learning and personal Relationship and Group Behaviour.	6	-						
	Total		30	-						
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, C: Cre gram Specific Outcomes	edits, CO: Course Outcomes, PO: Program Outcor	nes,	1						
Suggested	Books/References:									
S.N.	AUTHOR	TITLE								
1	Luthers Fred	Organizational Behaviour								
2	Prasad L.M	Prasad L.M Principles of Management								
3	Dewett,K.K	Modern Economic Theory								
4	S.K.Sharma, Savita Sharma	Industrial Economics and Principles of Managen	nent							



Course Ti	itle	FOC	)D BI(	OCHE	MISTI	RY & I	BIOTE	CHN	DLOG	Y					
Course co	de	PCF	ET-348	32					200	-					
Category		Profe	Professional Core Course												
Scheme and			L			Т		Р		С	Seme	Semester V			
Credits			3			0		0		3					
Pre-requi	None	e.													
(if any)		Desirable – Knowledge of basic biology and microbiology													
Course	The objective of this course is to impart														
Objective	• The knowledge about enzymes, its classification and its kinetics														
	The knowledge about various metabolic pathways taking place in our body														
Course O	utcom	es													
On the successful completion of the course, students will be able to															
CO1	Unde	erstand	the bas	sic con	cepts al	bout en	zymes					Understanding			
CO2	Unde	Jnderstand various metabolic pathways and digestion, absorption andUnderstanding													
	Assir	Assimilation of nutrients in human beings													
CO3	Eval	uate th	e quali	ty alter	ations	tions in food due to post-mortem and post- Evaluating									
	harv	narvest changes													
	TT														
CO4	Use v	arious/	enzym	les in fo	s in food processing and modification Applying										
СО-РО М	lapping	g													
1. Slight (Low) 2. Moderate (Medium) 2. Substantial (High) "". No Correlation															
COs			() 2.	WIGUE		POs	) 3.	Dubbid		ingn)	. 1		PSO		
000															
	POI	PO2	POS	P04	P05	PU0	P0/	PUð	PO9	POIU	POII	POIZ	PSUI	PS02	
01	2	2	3	2	-	-	-	-	-	-	-	-	3	3	
CO2	-	2	3	2	-	3	-	-	-	-	-	-	3	3	
CO3	2	2	3	3	-	3	-	-	-	-	-	2	3	3	
CO4	1	3	3	3	-	3	-	-	-	-	-	2	3	3	
Average	1.3	2.3	3.0	2.5	-	2.3	-	-	-	-	-	1.0	3.0	3.0	



Detailed (	Contents									
Module	Contents	L	Т							
		(Hours)	(Hours)							
Ι	Nomenclature, Classification and specificity of enzymes and cofactors, Enzyme	9	-							
	Kinetics: Factors affecting the rate of enzyme catalyzed reaction, regulation and									
	control of enzyme action.									
II	Metabolic Pathways: Carbohydrates, proteins and fats; catabolism and	9	-							
	anabolism.									
III	Digestion absorption Assimilation and Transport of nutrients in human beings.	9	-							
	Digestion absorption, resonantation and transport of nutrents in numan compsi									
IV	Post-harvest and Postmortem biochemical changes in foods: Changes in	9	-							
	composition, color, texture, flavor and its implications on quality of foods									
V	Application of anzymes in food processing: Endogenous anzymes and their role	9								
v	in modification of foods enzyme added to foods during processing sources		_							
	conversions and specific applications.									
	Total	45	-							
L: Lectur	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcom	nes,								
PSO: Pro	gram Specific Outcomes									
Suggested	Books/References:									
S.N.										
1	Fennema, O. R., Damodaran, S., & Parkin, K. L. (2017). Introduction to food chemistry. In									
	Fennema's food chemistry (pp. 1-16). CRC Press.									
2	Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of b	iochemis	try.							
3	Wilson I. J. (1988) Biochemistry: (Stryer Lubert)									
<u> </u>	wilson, J. L. (1968). Diochemistry, (Siryer, Lubert). Eskin N. M. & Shahidi F. (2012). Biochemistry of foods									
-	Liskin, IV. IVI., & Shandi, I. (2012). Diochemistry of 100ds									
5	Ranjha, M. M. A. N., Shafique, B., Khalid, W., Nadeem, H. R., Mueen-ud-Din, G., & Khalid, M.									
	Z. (2022). Applications of Biotechnology in Food and Agriculture: a Mini-Review. Proceedings of									
	the National Academy of Sciences. India Section B: Biological Sciences, 1-5.									

6 Lee, B. H. (2014). Fundamentals of food biotechnology. John Wiley & Sons.


Course Ti	tle	FOOD ANALYSIS												
Course co	de	PCF	ET-348	33										
Category		Profe	essiona	l Core	Course	e e e e e e e e e e e e e e e e e e e								
Scheme an	nd		L			Т		Р		С	Seme	ester V		
Credits			3			0		0		3				
Pre-requi	sites	Desi	rable- l	Knowle	edge of	chemi	ical cor	nstituer	nts of fo	oods				
(if any)				Basic k	nowle	dge of	chemis	try and	l mathe	ematics				
Course		The	obioati	vo of th		rao ia t	impo	**						
Objective	s	The	Know	ledge t	ns cou o stude	ist is u	o impai princin	l les and	l techni		f food a	nalveie	hy using	nhysical
o sjeen (e	5	chemical, biological and instrumental methods										1111 y 515	by using	pirysicai,
		•	To ap	nly the	ir knov	vledge	and sk	ills acc	mired 1	to solve	e real-w	vorld pr	oblems a	ssociated
			with f	ood an	alysis	rieuge	una on		lanca		o rour v	, on a bi	oorenno u	sso enacea
Course O	utcom	es												
On the suc	cessful	l comp	letion of	of the c	ourse,	student	ts will	be able	to					
	** 1									<u> </u>		<b></b>		
COI	Unde	rstand 1	the regu	lations	and sta	andards	s pertai	ning to	Food a	nalysis	and	Under	standing	
	conce	ept of sampling												
CO2	Apply	pply the methods for compositional analysis of food Applying												
001	pp	pry ne memous for compositional analysis of food Apprying												
CO3	Analy	yzing fo	oods us	ing Spe	ectrosco	opy inst	trument	t				Analyz	zing	
<u> </u>	Anal	uzing fe	ode by	chrom	atograf	hic too	hniqua	0				Analy	zina	
0.04	Anar	yzing it	Jous by	cinom	atograf		mique	5				Anary	Ling	
CO5	Analy	yzing fo	oods by	using	electro	phores	is, refra	actome	try, po	larimet	ry and	Analy	zing	
	Imm	unoassa	ay tech	niques		_					-			
~~~~														
СО-РО М		$\mathbf{g}_{\mathbf{h}}$))	Mada	noto(M	a dimm)	2.0	whatom	+; a1/II;	~h)	"". NI	Comol	ation	
<u> </u>	1.5115	gni(L0)	N) 2				5.0	uustan	luai(111	gn)	INC	Coner		
COs						PUs							PSUS	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	2	1	2	3	1	-	1	-	-	-	I	-	3	l
CO2	2	2	1	1	1	3	1	-	-	-	1	-	3	3
CO3	3	3	3	3	3	1	3	-	-	-	2	-	3	2
CO4	3	3	3	1	3	3	2	-	-	-	2	-	1	2
CO5	1	3	3	2	3	3	1	-	-	-	2	-	3	2
Average	2.2	2.4	2.4	2	2.5	2	1.6	-	-	-	1.6	-	2.6	2

Detailed (Contents		
Module	Contents	L (Hours)	T (Hours)
I	Introduction, government regulations and recommendations related to food analysis, sampling and sample preparation for analysis, statistical evaluation of analytical data, and official methods of food analysis. Determination of moisture in foods by different methods, ash content of foods, wet, dry ashing, microwave ashing methods, significance of sulphated ash, water soluble ash and acid insoluble ash in foods, titratable acidity in foods, determination of dietary fiber and crude fiber.	9	-
II	Determination of total fat in foods by different methods, analysis of oils and fats for physical and chemical parameters, quality standards, and adulterants, different methods of determination of protein and amino acids in foods, protein separation and characterization, determination of total carbohydrates, starch, disaccharides and simple sugars in foods, analysis of vitamin and pigments.	9	-
III	Basic principles of spectroscopy, ultraviolet, visible and fluorescence spectroscopy, infrared spectroscopy, atomic absorption and emission spectroscopy, mass spectrometry, nuclear magnetic resonance and electron spin resonance.	9	-
IV	Basic principles of chromatography, chromatographic techniques: paper, thin- layer and column chromatography. High performance liquid chromatography (HPLC) and gas chromatography (GC).	9	-
V	Principles and applications of electrophoresis, refractometry and polarimetry in food analysis. Immunoassay techniques and its applications in foods.	9	-
	Total	45	-
L: Lectur PSO: Pro	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcon gram Specific Outcomes	nes,	I
Suggested	Books/References		
S.N.	Books		
1	Nielsen, S. S. (2017). Food analysis laboratory manual. Springer.		
2	Pomeranz, Yeshajahu and Clifton E. Meloan "Food Analysis : Theory and Practic Springer, 2000.	ce", 3rd I	Edition,
3	Jacobs, Morris B. "Chemical Analysis of Food and Food Products". CBS Publish	ers,1999	
4	Nollet, Leo M.L. "Handbook of Food Analysis" 2nd edition, Vol. 1-3. Marcel De	ekker, 200)4.
5	Nollet, Leo M.L. "Food Analysis by HPLC". 2nd Edition. Marcel Dekker, 2000.		
6	Hurst, Jeffrey W. "Methods of Analysis for Functional Foods and Nutraceuticals" CRC Press, 2008.	" 2nd Edi	tion,

Course Ti	itle	TRADITIONAL AND FERMENTED FOODS																
Course co	de	PCF	ET-348	34														
Category		Profe	essiona	l Core	Course	e												
Scheme a	nd		L			Т		Р		С	Seme	ester V						
Credits			3			0		0		3								
Pre-requi	sites	None	е.				1				1							
(if any)		Desi	rable –	Know	ledge o	of basic	food r	nicrobi	ology									
Course		The	The objective of this course is to impart															
Objective	S	•	 Understanding about Indian traditional food 															
		•	Kno	wledge	e on pr	ocessin	ng and j	princip	les inv	olved i	n the fe	rmentat	ion proce	ess of				
			food	l produ	ct .													
Course	Knowledge on industrial termentation process																	
Course O	utcom	es																
On the suc	ccessful	l comp	letion of	of the c	ourse,	student	ts will l	be able	to									
		-																
COI	Proce	ess Indi	an trad	itional	sweet,	savory	and si	nack fo	od pro	ducts		Applyi	ng					
<u> </u>	Duon	repare and maintain microbial culture for fermentation																
02	Prepa	cpare and mannam microbial culture for fermemation Applying																
CO3	Appl	ly technology to produce and preserve various fermented food																
000	produ	icts lik	e dairy	produc	rts me	at and	fish nro	nduct a	alcohol	ic heve	rages	1 1991						
	ferme	ented v	e dan y egetah	les etc	<i>cus</i> , me	at and	non pro	Judet, t			<i>Auges</i> ,							
	Term	chica v	egetab															
<u> </u>	Appl	v toohr		for pro	duction	n of mi	orobial	nrotai	n and f	at foo	1	Apply	ina					
04	Appi		lditivos	orion	tal form	i or init contod	foods		n anu i	al, 1000	1	Аррту	ing					
	enzy	mes, ac	unives	, onen		liemeu	10005 (x musi	nooms									
СО-РО М	lapping	g										I						
	1: Sligh	nt (Low) 2:	Mode	rate (M	Iedium) 3:	Substa	ntial (1	High)	''-'': I	No Corr	elation					
COs			,			POs	,						PSOs	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				
CO1	2	1	2	1	_	3	_	_	-	-	_	_	2	2				
CO2	3	1	3	1	_	_	_	_	_	-	_	_	3	3				
CO3	3	2	3	2	_	3	_	_	_	_	_	2	3	3				
CO4	3	2	3	2	_	3	_	_	_	-	_	2	3	3				
Average	2.8	1.5	2.8	-	_	2.3	_	_	_	_	_	1.0	2.8	2.8				

			T						
Module	Contents	L	Т						
		(Hours)	(Hours						
Ι	Indian traditional sweet, savory and snack food products: Sweetmeats, Namkins, Papads Idli and Dosa	9	-						
Π	Preparation and Maintenance of Bacterial, Yeast and Mold cultures for food fermentations. Lactic acid bacteria-activities and health-promoting effects. Mushrooms: Cultivation and preservation.	9	_						
III	Fermented Dairy Products: Cheeses, Curd and Yoghurt, Butter milk and the fermented milks. Spoilages and defects of fermented dairy products and their control. Fermented meat and fish products.	9	_						
IV	Fermentative Production of Beer, Wines, Cider and Vinegar. Fermented Vegetables (Pickles).	9	-						
V	Production of Baker's Yeast, Microbial Proteins and fats, Food enzymes, and Food additives. Oriental fermented foods.	9	-						
	Total	45	-						
L: Lectur	e. T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcon	nes.							
PSO: Pro	gram Specific Outcomes	,							
Suggested	Books/References:								
S.N.									
1	Wood, B. J. (2012). Microbiology of fermented foods. Springer Science & Busine	ess Media	ì .						
2	Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation tech	nology.	Elsevier						
3	Hutkins, R. W. (2008). Microbiology and technology of fermented foods. John W	iley & So	ons.						
4	Frazier, W. C., & Westhoff, D. C. (1967). Food Microbiology Mc Graw-Hill Boo Nova York, NY, 252-282.	k Compa	ny.						
5	Tamang, J. P., Cotter, P. D., Endo, A., Han, N. S., Kort, R., Liu, S. Q., & Hutkins, R. (2020).Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science andFood Safety, 19(1), 184-217.								
6	Ananthanarayan, L., Dubey, K. K., Muley, A. B., & Singhal, R. S. (2019). Indian tradition	onal foods	:						
	Preparation, processing and nutrition. In Traditional Foods (pp. 127-199), Springer, Char	n.							

Course Ti	tle	FOOD SAFETY AND FOOD LAWS												
Course co	de	PCF	ET-348	35										
Category		Profe	essiona	l Core	Course)								
Scheme an	nd		L			Т		Р		С	Seme	ester V		
Credits			2			0		0		2				
Pre-requis (if any)	sites	Desi	rable–	Knowl	edge o	f chem	ical co	nstituer	nts of f	oods a	nd food	analysi	S	
Course Objectives	S	The	 Ine objective of this course is to impart Basic knowledge about food safety, quality and TQM The knowledge about the hazards, contaminants and adulterants affecting food quality The knowledge about Food safety management systems and their implementation ir food industry to ensure the quality and safety of the foods. The knowledge about different national & international food laws and standards and their requirements and importance in controlling the quality 											
On the suc	cessfu	l comp	letion of	of the c	ourse,	student	ts will	be able	to					
CO1	Expla cause	plain fundamentals of food safety, food derived hazards, common uses of food borne illness and role of food preservation in food safety												
CO2	Expland r	plain contamination in food through various modes, food adulteration Understanding d naturally occurring toxic constituents in foods												
CO3	App GMP	ly food ' in food	safety d indus	manage try	ement s	ystems	and pr	ograms	like H	ACCP	&	Apply	ing	
CO4	Analy	yze the	safety	aspects	related	to GM	lFs, irra	diated	foods e	etc.		Analyz	zing	
CO5	Unde proce their	erstand esses, f impler	about o ood saf nentatio	quality fety reg on in fo	manag gulation pod sys	ement is and f tems	system food sta	is to fo andards	od pro s code	duction & laws	and	Apply	ing	
СО-РО М	apping 1:Slig	g ght(Lov	w) 2	:Mode	rate(M	edium)	3:5	Substan	tial(Hi	gh)	"-": No	o Correl	ation	
COs	D O1	DOT	DO3	DO4	DOF	POs	DO7	DUo	DOO	DO 10	DO11	DO12	PSOs	BEOT
<u> </u>		r02	rus	2	г О 5 1	rU0	rU /	ruð	ruy	1010	2	r012	r501 2	r 502
	1		-	3	1	-	1	-	-	-	3	2	Z	L
CO2	1	2	1	2	2	1	-	2	-	1	2	1	2	2
	3	-	2	2	3	3		3	 1	$\frac{2}{2}$		3	3	2
			2	1 2	Δ	1		3 1	1 2			2	3	2
Average	1.6	1.1	1	2	1.6	1.6	1 1	1.8	0.8	1.2	2	2.4	2.6	2.1

		-	
Module	Contents	L	Т
		(Hours)	(Hours)
I	An overview of food safety, Food derived hazards: chemical, microbiological and physical hazards. Factors that contribute to food borne illness. The role of food preservation in food safety.	6	-
Π	Contamination in Food: Physical and chemical. Natural food contaminants and contaminants form packaging materials. Contaminants formed during processing – nitrosamines, acrylamide etc. Food Adulteration: effects and detection. Naturally occurring toxic constituents in foods.	6	-
III	Systems and programs for food safety: Good Manufacturing Practices (GMP), Good Agricultural Practices (GAP), Hazard Analysis and Critical Control Point (HACCP).	6	-
IV	Issues in food safety: Genetically modified foods, Food irradiation, Pesticide residues in foods, drinking water quality.	6	-
V	Food Acts and Legislations: Concepts and trends in food legislations, legislations governing food industry in India; Food Safety and Standards Act 2006. AgMark, and BIS Standards. International and federal standards: Codex alimentarious, ISO series, food safety in USA. Legislation in Europe: Directives of the official journal of the EU, council regulations, food legislation in UK.	6	-
	Total	30	-
L: Lectur	e. T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcor	nes.	
PSO: Pro	ogram Specific Outcomes	,	
Suggested	Books/References		
S.N.			
1	Kirk, S., & Sawyer, R. (1991). Pearson's composition and analysis of foods (No. Ed. Group Ltd	9). Longn	nan
2	Ranganna, S. (1986). Handbook of analysis and quality control for fruit and vegetable pro McGraw-Hill Education.	oducts. Ta	ta
3	Meloan, C. E., & Pomeranz, Y. (1972). Food analysis laboratory experiments.		
4	I.S.A HACCP & ISO-22000. ISO9000-01		
5	Fung, F., Wang, H. S., & Menon, S. (2018). Food safety in the 21st century. Biomedia 88-95.	cal journa	l, 41(2),
-			

Course Ti	itle	FOC	DD EN	GINE	ERINC	J-II											
Course co	de	PCF	ET-348	36													
Category		Profe	essiona	l Core	Course	e											
Scheme an	nd		L			Т		Р		С	Seme	ester V					
Credits			3			0		0		3							
Pre-requi	sites	Knov	wledge	of bas	ic phys	ics					1						
(if any)			-														
Course		The	objecti	ve of th	nis cou	rse is to	o impai	t									
Objective	S	•	The	knowl	edge al	bout ap	plicati	on of h	eat trai	nsfer/th	ermal p	processi	ng in foo	ds			
	The knowledge about application of drying and dehydration in food processing																
Course O	Course Outcomes																
On the suc	cessful	l comp	letion of	of the c	ourse,	student	ts will l	be able	to								
CO1	Undo	Understand the fundamentals of transport phenomena and basic modes. Understanding															
	of her	i stanu at trans	fer	luamen		uansp	on phe	nomen	a anu t		oues	Under	standing				
CO2	Apply	Apply the knowledge of conduction, convection and radiation modes of Applying															
001	heat t	heat transfer in food processing operations															
CO3	Use the	he tech	nology	of Pas	teuriza	tion an	d Steri	lizatio	n in foo	od proc	essing	Apply	ing				
			0.							1	U		C				
CO4	Apply	y the te	chnolo	gies of	freezii	ng, con	centrat	ion, ev	aporati	ion,		Apply	ing				
	dryin	g/dehy	dration	and th	eir app	lication	n in foo	od proc	essing	operati	ions						
СО-РО М	apping	g															
	1. 01:~1		.))	Mada	noto (N	[adium) 2.	Cubata	ntial (1	Lab)	·· ››. N		alation				
COs	1: Sligi	II (LOW	/) Z:	Mode	rate (N) 3.	Substa	initial (I	nign)	1	NO COM					
COS						105				1			1508	•			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
CO1	3	2	3	2	-	-	-	-	-	-	-	-	3	3			
CO2	3	3	3	3	2	-	-	-	-	-	-	-	3	3			
CO3	3	3	3	3	2	-	-	-	-	-	-	-	3	3			
CO4	3	3	3	3	2	-	-	-	-	-	-	-	3	3			
Average	3	2.8	3	2.8	1.6	-	-	-	-	-	-	-	3	3			

Detailed C	Contents		
Module	Contents	L (Hours)	T (Hours)
I	Heat transfer: Conduction: steady state heat conduction equation, heat conduction in slabs, cylinders and Spheres, Heat generation inside solid, Unsteady state heat conduction, Biot number, Fourier number and Heisler Charts, Extended surfaces, effectiveness of fins, thermal insulation and their selection, Optimum and economic thickness of insulation, Principles of heat flow in fluids, Individual and over all heat transfer coefficients.	9	-
Π	Convection: Free and forced convection, dimensionless numbers in heat transfer, expressions for calculating heat transfer coefficients, Laminar and turbulent heat transfer inside and outside tubes, annuli finned tubes, Natural convection and its applications. Radiation: Kirchoffs Law, Stephdn's Law Heat flux by radiation, Heat exchanger, Classification, applications, mode of operation, Effectiveness, flow arrangement. heating fluids, thermal fluids	9	-
III	Thermal operations: Pasteurization and Sterilization - Basic concept, pasteurization of unpackaged and packaged foods, effects of pasteurization on foods. Energy requirement and rate of operations involved in process time evaluation in batch and continuous sterilization, UHT processing; aseptic packaging; irradiation and microwave processing of foods.	9	-
IV	Freezing: Plank's law and estimation of freezing time of foods; equipment, freeze concentration of liquid food. Rate of freezing. Concentration and Evaporation: Concentration of liquid foods in batch and continuous type evaporators; heat and energy balance in multiple effect evaporators; falling and rising film evaporators; mechanical and thermal vapour recompression systems.	9	-
V	Drying of Foods: various mechanisms of moisture removal in solid and liquid foods during drying; properties of air-water vapour mixture; drying operations based on conduction, convection and radiation heat transfer; different types of dryers.	9	-
	Total	45	-
L: Lecture PSO: Pro	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcor gram Specific Outcomes	nes,	
Suggested	Books/References:		
1	Toledo, R. T., Singh, R. K., & Kong, F. (2007). <i>Fundamentals of food process en</i> 297). New York: Springer.	ngineerin ₈	g (Vol.
2	Heldman, D. R., Lund, D. B., & Sabliov, C. (Eds.). (2018). Handbook of food en press.	gineering	. CRC

Course Ti	itle	FOOD BIOCHEMISTRY AND BIOTECHNOLOGY LAB																
Course co	ode	PCF	ET- 30	487														
Category		Profe	essiona	l Core	Course	e												
Scheme a	nd		L			Т		Р		С	Seme	ester V						
Credits			0			0		4		2								
Pre-requi	sites	Basi	c know	ledge	of biolo	ogy, fo	od cher	nistry,	bioche	mistry	& biote	echnolo	gy.					
(if any)				U		00		5		5			00					
Course		The	The objective of this course is to impart															
Objective	S	•	Knowledge of effect of various enzyme activity on food															
		•	Knowledge of various application of enzyme in food															
Course O	Outcomes																	
On the suc	On the successful completion of the course, students will be able to																	
C01	Asses	ss enzy	me acti	ivity ar	nd spec	ific act	ivity					Evalua	ating					
		2		2	1		2						U					
CO2	Deter	etermine the effect of pH, temperature substrate concentration on Analyzing																
	enzyr	me activity																
CO3	Appl	ply biochemical test for estimation of enzymatic reaction in a food Applying																
004																		
CO4	Estim	nate enz	zyme a	ctivity	in fruit	is and v	regetab	les				Evalua	ating					
C05	Apply	v enzvr	nes in	various	nroce	ccina ir	1 food					Apply	ina					
0.05	Appi.	y enzyi	nes m	various	proces	ssing n	1100 u .					Арріу	ing					
	[[]	~																
CO-PO M	lapping	g																
	1: Slig	nt (Low	() 2	: Mode	rate (N	ledium) 3:	Substa	ntial ()	High)	"_"·]	No Corr	elation					
COs						POs	,			8)			PSO	5				
	PO1	PO2	PO3	PO 4	PO5	PO6	P07	PO8	POQ	PO10	PO11	PO12	PSO1	PSO2				
CO1	2	102	2	2	2	1	10/	100	109	1010	-	1012	2	2				
<u> </u>	2	1	2	2	2	1							2	2				
02	3	2	3	3	2	3	-	-	-	-	-	1	3	3				
CO3	1	2	2	2	2	2	-	-	-	-	-	2	2	3				
CO4	2	2	3	3	3	3	-	-	-	-	-	2	2	3				
CO5	1	3	3	3	1	2	-	-	-	-	-	2	3	3				
Average	1.8	2	2.6	2.6	2	2.2	-	-	-	-	-	1.4	2.4	2.8				

List of Pra	ctical								
S.N.	Practical								
1	Determination of enzyme activity and specific activity (Enzyme assay)								
2	Determination of effect of temperature on enzyme activity								
3	Determination of effect of pH on enzyme activity								
4	Determination of effect of substrate concentration on enzyme activity and estimation of Km.								
5	Estimation of enzymatic browning in a food								
6	Estimation of enhancement in an enzyme activity during ripening of a fruit								
7	Estimation of enhancement in an enzyme activity during sprouting of a grain								
8	Detection/ estimation of catalase and peroxidase activity in vegetable								
	Application of enzymes:								
	Amylase in hydrolysis of starch.								
	Invertase in hydrolysis of sucrose.								
	Protease in hydrolysis of protein								
	Lipase in hydrolysis of fat.								
	Cellulase and hemicellulase for dehulling of a grain, etc.								
L: Lecture	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,								
PSO: Prog	gram Specific Outcomes								
Reference	Books and Suggested Readings:								
S.N.									
1	An introduction to practical biochemistry by D.T.Plummer, III Ed. Tata McGraw Hill Publishing								
	Co. New Delhi								
2	Principles of Enzymology for Food Science by J.R.Whitaker, Marcel Dekker Inc								
3	Methods in Enzymology by S.P.Colwick and N.O. Kaplan, Acadmic Press								

Course Ti	itle	FOOD ANALYSIS LAB												
Course co	de	PCF	ET-304	188										
Category		Profe	essiona	l Core	Course	e								
Scheme an	nd		L			Т		Р		С	Seme	ester V		
Credits			0			0		4		2				
Pre-requi	sites	Basi	c know	ledge	of nutri	tion, n	utrients	s and fo	ood cor	stituer	its			
(if any)		Desi	rable-	Knowl	edge of	f basic	chemis	stry and	1 mathe	ematics	5			
Course		The	The objective of this course is to impart											
Objective	S	•	• The knowledge about carrying out proximate and physic-chemical analysis of											of
			different types of raw and processed foods.											
			 The knowledge of handling advance food analysis againments 											
Course O	• The knowledge of handling advance food analysis equipments ourse Outcomes													
On the suc	recefu	l comn	letion (of the c	ourse	student	te will l	he ahle	to					
On the suc	icessiu.	i comp			ourse,	studen	ls will		10					
CO1	Prepa	are the	sample	s of di	fferent	kinds of	of food	s for su	ibsequ	ent ana	lysis	Apply	ing	
	1		1						1		2		U	
CO2	Estin	stimate protein, fats, peroxide and iodine value, applying various Evaluating												
	analy	alytical techniques												
<u> </u>	Amal	Analyze the quantity of specific minerals present in foods by testing												
0.03	Anar	methodology Analyzing												
	mem	ouolog	y											
CO4	Dete	rmine s	pecific	colou	ring ma	atters a	nd add	ed pres	ervativ	es in fo	oods	Analyz	zing	
	2000		P • • • • •	• • • • • •				e pres		•••			8	
CO5	Anal	yze foc	od adul	terants	in com	mercia	ıl mark	et prod	ucts			Analyz	zing	
СО-РО М	lappin	g												
	1.01:	wht/Lor		Mode	noto(M	adium)	2.0	ubston	tial/U;	ah)	""· No	Corrol	ation	
COs	1.5118	gin(L0)	N) 2	uc		POs	5.0	uustan	luai(111	gii)	NC	Conter	PSOs	
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	3	1	200	-	2	-	-	3	2		3	3
<u> </u>	2	2	2	2	2	2	2			2	2		2	2
	5	2	3	3	3	5	5	-	-	3	2	-	3	3
	3	2	3	3	3	3	1	-	-	3	2	-	3	3
	3	2	3	3	3	3	2	-	-	3	2	-	3	3
	3	3	3	3	3	3	1	-	-	3	2	-	3	3
Average	2.8	1.8	3.0	2.6	2.8	2.4	1.8	-	-	3.0	2.0	-	3.0	3.0

List of Pra	List of Practical									
S.N.	Practical									
1	Determination of specific mineral contents in foods such as Calcium, Iron, Phosphorus, Chloride etc.									
2	Determination of specific vitamin content of food such as ascorbic acid, carotenes etc.									
3	Determination of specific natural and/ or added colouring matters in foods.									
4	Determination of specific added food preservatives in foods.									
5	Chromatographic separation and identification of sugars and amino acids.									
6	Experiment using principles of colorimetry and spectrophotometry.									
7	Analysis of foods for pesticides and drug residues.									
8	Test for Adulterants									
L: Lecture PSO: Prog	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes, gram Specific Outcomes									
Reference	Books and Suggested Readings:									
S.N.	Details									
1	Food Analysis by S. Suzanne Nielsen									
2	Nollet, Leo M.L. "Handbook of Food Analysis" 2nd edition, Vol. 1-3. Marcel Dekker, 2004.									
3	Nollet, Leo M.L. "Food Analysis by HPLC". 2nd Edition. Marcel Dekker, 2000.									
4	Hurst, Jeffrey W. "Methods of Analysis for Functional Foods and Nutraceuticals" 2nd Edition, CRC Press, 2008.									

Course Ti	tle	FOO	D ENG	GINEE	RING-I	I LAB								
Course co	de	PCFI	ET-3408	89										
Category		Profe	essiona	l Core	Course	e								
Scheme an	nd		L			Т		Р		С	Seme	ester V		
Credits			0			0		2		1				
Pre-requis	sites	Basi	c know	ledge o	of heat	transfe	er opera	tions	•					
(if any)				_			_							
Course		The	objecti	ve of th	nis cou	rse is to	o impai	t						
Objectives	S	•	The	practic	al kno	wledge	e about	basic r	nodes	of heat	transfe	r in foo	ds.	
		•	Prac	ctical sl	cills to	unders	stand, a	nalyze	and so	lve pro	blems 1	related t	0	
	4		varı	ous too	od proc	essing	operati	ons.						
Course O	utcome	es												
On the successful completion of the course, students will be able to														
C01	Interr	oret and	et and analyze modes of heat transfer in foods. Analyzing											
CO2	Interp	oret and	l analy:	ze vari	ous ope	erations	s invol	ving he	at tran	sfer in	food	Analyz	zing	
	indus	try like	freezi	ng, mo	isture r	remova	l, dryin	ig, evaj	poratio	n and				
	conce	entratio	n etc.											
СО-РО М	apping	5												
	1: Sligh	nt (Low	<i>i</i>) 2:	Mode	rate (N	Iedium) 3:	Substa	ntial (1	High)	''-'': N	No Corr	elation	
COs			,			POs	/						PSOs	5
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	2	1	2	2	-	_	-	-	-	-	3	3
CO2	3	3	2	2	2	3	-	-	-	-	-	-	3	3
Average	3.0	2.5	2.0	1.5	2.0	2.5	-	-	-	-	-	-	3.0	3.0

List of Pra	ctical
S.N.	Practical
1	Heating and cooling of food product.
2	Freezing of food product
3	Drying of fruits and vegetables
4	Concentration of liquid foods
5	Problems of multi effect evaporators
6	Visit to related food industry
L: Lecture	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Prog	gram Specific Outcomes
Reference	Books and Suggested Readings:
S.N.	
1	Laboratory Manual
2	Barbosa-Cánovas, G. V., Ma, L., & Barletta, B. J. (2017). Food engineering laboratory manual. CRC Press.

Course T	Title	DA	IRY T	ECHN	OLO	GY									
Course c	ode	PC	FET-34	194											
Category	7	Pro	fession	al Core	e Cours	se									
Scheme a	and		L			Т	F)		С	Sem	lester V	Ι		
Credits			2			0	()		2					
Pre-requ	isites	Des	sirable-	- Know	ledge	of chen	nical co	onstitue	ents of	foods a	and che	mistry			
(if any)															
Course		The	e object	ive of	this cou	urse is	to impa	art							
Objectiv	es		• Mi	lk com	positio	n and i	ts vario	ous pro	perties	and di	fferent	adultera	int		
			• Wo	orking	of equi	pment	and pro	ocess to	echnolo	ogy for	various	s milk p	roducts		
			• Pro	cess te	chnolo	ogy for	milk p	owder	and fer	mente	d milk p	broducts			
0			• Cle	eaning	and sai	nitation	of dar	ry indu	istry &	utılıza	tion of a	milk by	-products	\$	
Course C	Jutcon	ies													
On the su	iccessfi	ul com	pletion	of the	course	, studei	nts will	be abl	e to						
CO1	Und	erstand	l about	milk c	ompos	ition a	nd phys	sicoche	emical	aspects	s along	Uı	nderstand	ling	
	with	proc	uremen	it & 1	transpo	ortation	and	nation	al &	intern	ational				
	stan	dards													
CO2	Und	erstand	l the f	undam	ental a	aspects	of tes	sting o	of milk	quali	ty and	Uı	nderstand	ling	
	appl	ication	meth	odolog	y of j	pasteur	ization	, stan	dardiza	tion,	toning,				
	hom	ogeniz	ation a	nd crea	ım sepa	aration	from n	nilk							
CO3	Und	Understand basics of cleaning procedures, methods of manufacture, Understanding													
	pack	packaging, storage & defects in Butter, Ghee and Ice cream													
CO4	Und	erstand	I the ap	plication	on and	techno	ology a	pplied	for the	develo	opment	Al	oplying		
	of e	vapora	ited and	d conde	ensed n	nilk an	d vario	us dair	y prod	ucts ba	sed on				
	coag	gulatior	n, conce	entratio	on, reco	onstitut	ion and	l dryin	g						
CO5	Exp	lain abo	out byp	roducts	s of dai	ry indu	stry an	d their	effectiv	ve appl	ication	A	oplying		
CO-PO N	Mappir	ng													
	1:Slig	ght(Lov	w) 2	:Mode	rate(M	edium)	3:5	Substan	tial(Hi	gh)	"-": No	o Correl	ation		
COs						PO	s						PSC)s	
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO1	PSO2	
	1	2	3	4	5	6	7	8	9	10	1	2			
CO1	2	1	-	-	1	1	-	-	-	-	1	-	2	1	
CO2	3	1	2	3	1	3	-	-	-	-	1	-	3	2	
CO3	3	1	-	-	2	3	-	-	-	-	2	-	3	3	
CO4	3	2	2	2	2	3	-	-	-	-	2	-	3	3	
CO5	3	2	2	2	2	3	-	-	-	-	2	-	3	3	
Average	2.8	1.4	1.2	1.4	1.4	2.6	-	-	-	-	1.6	-	2.8	2.4	

Detailed	Contents			
Module		Contents	L (Hours)	T (Hours)
I	Fluid Milk: Composition of characteristics of milk and cooling and transportation pasteurized milk	milk and factor affecting it. Physico-chemical milk constituents. Production and collection, of milk. Packaging storage and distribution of	6	-
II	Whole, Standardized, Toneo quality and Adulteration. U Cleaning and sanitization o Composition and physico-cho and quality control	d, Double toned and skim milk. Test for milk HT processed milk, flavoured, Sterilized milk. of dairy equipment. Definition, Classification, emical properties of cream. Production processes	6	-
III	Butter: Definition, Classifica Packaging and storage. Butte and Composition, Constitute freezing of Ice cream, Overru	tion, Composition and methods of manufacture, er oil/Ghee. Ice cream: Definition, Classification ents and their role. Preparation of mixes and an, Judging, Grading, and defects of Ice cream.	6	-
IV	Evaporated and Condensed storage. Defects, Causes, an solids. Instantization. Flow at Wet ability, Sink ability and	6	-	
V	Byproducts of Dairy Industr casein, Whey protein, Lacto Quality Control tests in Dairy	y and their effective utilization. Manufacture of se from milk and their use in formulated foods. y industry	6	-
	Total		30	-
L: Lectur PSO: Pro	re, T: Tutorial, P: Practical, C: C ogram Specific Outcomes	Credits, CO: Course Outcomes, PO: Program Outco	omes,	
Suggestee	l Books			
S.N.	AUTHOR	TITLE		
1	Sukumar Dey	Outlines of Dairy Technology		
2	R Robinson	Advances in Milk Processing		
3	N.N. Potter	Food Science		
4	O. R. Fennema	Food Chemistry		

Course 7	ſitle	1	FLAVO	R TEC	CHNOL	OGY									
Course	code		PCFT-	3487											
Catego	ry	I	Professi	onal Co	re Cou	se									
Scheme	and			L		Т	F	þ		С	Sem	ester- VI			
Credits				2		0	()		2					
Pre-req	uisites		None								•				
(ifany)	-		Desira	ble – K	nowled	ge of f	ood ad	ditives							
Course			The of	ojective	of this	course	is to in	npart							
Objecti	ves		•	Know	ledge al	oout fo	od flav	voring a	gents						
			•	Know	ledge of	f flavoi	r techn	ology ii	n formu	lating fl	avor pro	file			
			•	Know	ledge al	oout an	nalysis	of flave	or						
Course	Outco	mes													
On the	SUCCESS	ful co	mnletio	n of the	course	stude	nts wil	l be abl	e to						
On the	Juccess	101 00	mpieno	ii or the	course	, stude		1 00 401	0 10						
C01	Un	dersta	nd flav	or and i	t's prin	ciple cl	hemica	l consti	tuent			Unders	standing		
					1	1							C		
CO2	CO2 Apply the knowledge gained to determine flavors in beverages and the Applying														
	factors affecting the flavor														
CO3	CO3 Understand the chemistry of natural and artificial source of flavor Understanding														
0.05	Understand the chemistry of natural and artificial source of flavor Understanding														
CO4	Un	dersta	nd the e	effects o	of proce	ssing,	storage	e, transp	ortatio	n and		Unders	standing		
	env	vironn	nental c	ondition	ns on fla	avor co	ompone	ents							
005		1 /1	1 1	1 1	• 1•		1 1		·		1	A 1 '			
005	Ap	ply th	e know	ledge ga	ained in	recent	develo	opment	s in flav	our rese	earch,	Applyi	ng		
	pro	0005511	ig and t	ecimore	gy										
CO-PO	Mann	ing													
0010	1:S	light (Low)	2:Mo	derate (Mediu	m) 3	3:Subst	antial (I	High)	"-": No	Correlat	tion		
COs						POs							PSC	Ds	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	1	1	1	-	-	-	-	-	-	1	2	3	
CO2	3	2	2	2	3	2	_	-	-	-	-	2	3	3	
CO3	2	- 3	-	2	2	-	_	_	_	_	_	- 1	3	3	
CO4	3	3	1	3	2	_	_	_	_	_	_	1	3	2	
CO5	3	2	3	3	3	2	-	-	-	-	-	2	3	3	
Average	2.8	2.2	1.4	2.2	2.2	0.8	-	_	_	-	-	1.4	2.8	2.8	

Detailed	Contents			
Module	Contents		L (Hours)	T (Hours)
Ι	Definition and description of flavour, flavour chemical constituents. Sensation of flavour vs ta feel influence of chemical constituents on flavou flavour characteristics.	profile and its principal aste odor/smell and mouth r and their interaction with	6	-
Π	Factors that affect the flavour and control of fl Measurement of flavour, particularly for wine condiments.	avour in processed foods. , tea, coffee, species and	6	-
Ш	Flavour intensifiers and their effects. Che (commercial preparations) of various flavour int Natural and synthetic flavouring substanc characteristics. Flavour components/constituent coffee, tea and cocoa bean, spices and condiment	emistry and technology ensifiers es and their chemical as of fruit and vegetables, ats	6	-
IV	Changes in flavouring components and cooking/processing of various foods. Effects transportation and environmental con components/constituents.	6	-	
V	Production and Processing (industrial/commerce of flavouring compounds of plant foods a applications. Recent developments in flavour technology	ial) technologies/methods nd their utilization and research, processing and	6	-
	Total		30	-
L: Lectur	re, T: Tutorial, P: Practical, C: Credits, CO: Course	Outcomes, PO: Program O	utcomes,	
PSO: Pro	ogram Specific Outcomes			
Suggested	1 Books			
S.N.	AUTHOR	TITLE		
1	Andrew J. Taylor and Robert S.T. Linforth	Food flavor technology		
2	Gary Reineccius.	Flavor chemistry and tec	hnology	

Course T	itle	FOO	FOOD PRESERVATION & PROCESSING PRINCIPLES													
Course c	ode	PCFE	ET-348	8												
Category	7	Pro	fession	al Core	e Cours	se										
Scheme a	and		L			Т	F)		С	Sem	ester- V	/I			
Credits			3			0	()		3						
Pre-requ	isites	Nor	ne													
(if any)		Des	sirable	– Knov	vledge	of basi	ic scien	ice								
Course		The	e object	ive of	this cou	urse is	to impa	art								
Objectiv	es		• Kn	owledg	ge of ba	asic pre	eservati	ion met	thods.							
			• Kn	owledg	ge of pi	rocessi	ng for j	preserv	ation o	of food	from sp	oilage.				
			• Kn	owledg	ge abou	it techr	nologic	al aspe	cts of p	process	ing and	equipn	nent.			
Course C	Outcon	ies														
On the su	iccessfi	ul com	pletion	of the	course.	, studei	nts will	be abl	e to							
CO1	Und	lerstand	the ba	asic pri	nciples	and ol	bjective	e of foc	od pres	ervatio	n	Unde	erstandin	g		
<u> </u>	Und	lorator	tha n	incinlo	a of pr	acarvat	ion by	low to	mnorat	uro		Unde	rotondin	9		
02	Und	iei stain	i the pi	merpre	s or pr	eservai	lion by	IOW LEI	прегас	uie		Unud	zi Stanum	g		
CO3	Understand the principle of high temperature preservation and Applying															
	applying thermal processing techniques in food industry for															
	preservation															
CO4	Und	lerstand	the pr	eserva	tion me	ethod b	y wate	r remo	val and	its		Unde	erstandin	g		
	tech	nologi	cal asp	ects												
C05	Und	lerstand	the n	inciple	s of pr	eservin	ng food	hy yar	ious no	n_ther	mal	Unde	erstandin	σ		
0.05	met	hods	i uic pi	merpre	5 01 pr		15 1000	0y vai	1045 110	m then	inai	Chat	215tanam	5		
CO-PO N	Aannii	าฮ														
00101	uppn	-8														
	1:Slig	ght(Lov	w) 2	:Mode	rate(M	edium)) 3:8	Substan	tial(Hi	gh)	"-": No	Correl	ation			
COs						PO	S						PSC)s		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	1	-	1	-	1	1	-	-	-	-	1	2	1		
CO2	3	2	-	1	-	1	1	-	-	-	-	1	3	3		
CO3	2	2	-	1	-	1	1	-	-	-	-	1	3	3		
CO4	3	2	1	1	-	1	-	-	-	-	-	1	3	2		
CO5	3	2	1	-	-	-	-	-	-	-	-	1	3	3		
Average	2.8	1.8	0.4	0.8	-	0.8	0.6	-	-	-	-	1	2.8	2.4		

Detailed	Contents			
Module		Contents	L (Hours)	T (Hours)
I	Basic considerations: Aims foods, Characteristics of tissue of unmodified foods, Caus perishable foods, intermediate	and objectives of preservation & processing of es and non-tissues foods, Degree of perishability ses of quality deterioration and spoilage of e moisture foods, wastage of foods.	9	-
II	 Preservation of foods by low (A) Chilling temperatures: Cochilling temperatures, Application atmosphere storage of foods, (B) Freezing temperatures: Frand its consequence, other occur Technological aspects of present thaving of foods. 	temperatures: onsideration relating to storage of foods at ations and procedures, Controlled and Modified Post storage Handling of foods. reezing process, Slow and fast freezing of foods currences associated with freezing of foods. freezing, Actual freezing, Frozen storage and	9	_
II I	Preservation of foods by hdestruction of microorganismmicroorganisms. Cooking, Hfoods. Assessing adequacy ofcaning of foods, Spoilage in c	9	_	
IV	 Preservation by water reme (a) Principles, Technological concentration process; Freeze concentrations. (b) Principles, Technological dehydration of foods, Cabinet mat, fluidized-bed and freeze 	oval: aspects and application of evaporative concentration and membrane process for food aspects and application of drying and t, tunnel, belt, bin, drum, spray, vacuum, foam drying of foods	9	-
V	Principles, Technological a Antimicrobial agents, Biologi in preservation of foods. Huro	Ispects and application of sugar and salt, ical agents, non ionizing and ionizing radiations ille technology.	9	-
	Total		45	-
L: Lectu PSO: Pr	re, T: Tutorial, P: Practical, C: C ogram Specific Outcomes d Books	redits, CO: Course Outcomes, PO: Program Outco	omes,	
S N	AUTHOR	TITLE		
1	B. Sivasankar	Food processing and preservation		
2	V.Kyzlink	Principle of Food Preservation		
3	G. W Gould	New method of food preservation		

Course T	Title	MAC	HINE	DESIG	N											
Course c	ode	ESME	E-3489													
Category	/	Engin	eering S	Science	Course											
Scheme a	and		L			Т	F)		С	Sem	ester V	Ι			
Credits			2			1	()		3						
Pre-requ	isites	Bas	ic know	wledge	of mar	nufactu	iring sc	ience								
(if any)																
Course		This	Course	e object	tive is t	to impa	ırt									
Objective	es	•	The	knowl	edge of	f machi	ine part	ts								
		•	Und	erstand	ling of	machii	ne desig	gn and	manuf	acturin	g					
Course C	Outcon	ies														
On the su	Iccessfi	ul com	nletion	of the	course	studer	nte will	he ahl	e to							
CO1	Unc	lerstan	d basic	metho	dology	of Eng	gineeri	ng desi	on and	its		Une	lerstandi	ng		
001	Cor	nsiderat	tion	metho	401055		5		.5.1 uiiu	100		CIA	aoistailai			
	001	1910010	lion													
CO2	Est	imate t	he des	ign loa	d unde	r static	and dy	mamic	conditi	ions		Eva	luating			
	TT	1 4	1 1	· ·	•	·	1 1	1	<u> </u>		1 1	TT	1 4 1'			
CO3	Unc	lerstan	d abou	t engin	eering	materia	als and	selecti	on of n	nateria	ls and	Une	derstand	ng		
	thei															
CO4	Ap	pply design of power transmission systems like belt, pulley and Applying														
	shat	fts; rive	ts; riveted and welded joints; keys, couplings, lever and brackets													
					5		· •	0								
CO5	Ap	ply des	sign of	pressu	re vess	els like	thick a	and this	n cylin	ders, p	ipe	Ap	olying			
	and	joints	and ge	eneral i	ntrodu	ction to	o Auto	CAD								
CO-PO M	Mappir	ıg														
	1 01	1	\ ^			1.			· 1/11	1 \	((1)) 1	a 1	<i></i>			
COa	1:511§	gnt(Lov	N) 2		rate(M) 3:2	Substan	itiai(Hi	gn)	: N(Correl	ation PSC)a		
COS						ru	8						150	8		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	PO1	PSO1	PSO2		
001	1	2	3	4	5	6	7	8	9	10	1	2				
COI	1	1	1	1	1	-	-	-	-	-	-	-	2	1		
CO2	1	1	1	1	2	-	-	-	-		-	-	1	2		
										-						
CO3	1	1	2	1	1	-	-	-	-	-	-	-	2	1		
CO4	1	1	1	1	1	-	-	-	-	-	-	-	1	1		
CO5	1	2	1	1	1	-	-	-	-	-	-	-	1	1		
Average	1	1.2	1.2	1	1.2	-	-	-	-	-	-	-	1.4	1.2		

Detailed (Contents			
Module		Contents	L(H ours)	T (Hou rs)
I	Introduction to the methodolo product/ system; Important co concepts; Miscellaneous cons aesthetic aspects; Ergonomics	gy of Engineering design; Design circle for a nsiderations in design; Formulation of design iderations like wear, environmental, human and considerations.	6	3
П	Estimation of design load und safety; Stress concentration ar creep, fatigue and thermal stre	er static and dynamic conditions; Design for nd its effect and its prevention; Consideration of esses in design	6	3
ΠΙ	Material selection in design; I classification and properties; I composites; Advantages over	mportant engineering materials- Their Elementary idea of rubber, plastic ceramics and conventional metals and alloys.	6	3
IV	Design of power transmission riveted and welded joints; Des	6	3	
V	Design of pressure vessels- th ideas and importance of comp general introduction to AutoC	ick and thin cylinders, pipe and joints; Elementary puter aided design; Basics of computer graphics - AD.	6	3
	Total		30	15
L: Lectur PSO: Pro	re, T: Tutorial, P: Practical, C: C ogram Specific Outcomes	redits, CO: Course Outcomes, PO: Program Outcon	nes,	
Suggested	l Books			
S.N.	AUTHOR	TITLE		
1	R.S Khurmi	Machine multicolor edition		
2	Robert L. Northon	Safety Management in Industry		

Course T	litle	CEREALS, PULSES & OIL SEED PRODUCTS														
Course c	ode	PCI	FT-349	0												
Category	7	Pro	fession	al Core	e Cours	se										
Scheme a	and		L			Т	ŀ)		С	Sem	nester [*]	VI			
Credits			3			0	()		3						
Pre-requ	isites	Nor	ne.		•						•					
(if any)		Des	sirable	– Knov	vledge	of uni	t opera	tions a	nd foo	d proce	esses, fo	od co	mpositio	n		
Course		The	e object	ive of	this co	urse is	to imp	art								
Objectiv	es	•	knov	vledge	about c	ereal,	pulses	and gra	ains.							
		•	knov	vledge	about v	arious	millin	g, refin	ing tec	hnolog	gies.					
Comme																
Course	Jutcon	ies														
On the su	ccessfi	ul com	pletion	of the	course	, studei	nts will	be abl	e to							
CO1	Unde	rstand	the bas	ic conc	ept abo	out con	npositi	on and	structu	re of c	ereals	Unde	erstandin	g		
<u> </u>	Undo	retord	vorious	millin	g of w	haat						Und	rotondin	a		
02	Under	Istanu	various	, 11111111	g or w	licat						Unu	stanum	g		
		Understand dry and wet milling of corn Understanding														
CO3	Unde	Jnderstand dry and wet milling of corn Understanding														
CO4	Unda	Understand milling of legumes Understanding														
04	Unde	rstand milling of legumes Understanding														
CO5	Unde	rstand	refining	g of oil								Unde	erstandin	g		
CO-PO N	Aappir	ng														
1.	Slight	(Low)	2· №	Aodera	te (Me	dium)	3.8	ubstan	tial (Hi	oh)	"-" [.] No	Corr	lation			
COs	Siigiit	(LOW)	2.1	ioueru		PO	s 5. 5	uostun	uui (111	511)	. 100		PSC)s		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PSO1	PS		
	1	2	3	4	5	6	7	8	9	10	1	12	1501	02		
C01	2	1	1	_	_	_	_	_	_	_	_	_	1	1		
CO2	2	1	1	_	_	_	_	_	_	_	_	_	1	1		
CO3	1	1	1										2	1		
	1	1	1	-	-	-	-	-	-	-	-	-	Z	1		
CO4	1	1	1	-	-	-	-	-	-	-	-	-	2	2		
CO5	1	1	1	-	-	-	-	-	-	-	-	-	1	1		
Average	1	1	1	-	-		-	-	-	-	-		1.4	1.2		

Module	Contents	L (Hours)	T (Hours)
I	Composition, Structure and Processing characteristic of Cereal grains, Legumes and oilseeds, Post harvest, Post processing practices for their safe storage. Parboiling and Milling of paddy, Quality characteristics, Curing and aging of rice, Processed rice products.	9	-
II	Wheat and its quality characteristics for milling into flour and semolina, Flour milling, Turbo grinding and air classification, Flour grades and their suitability for baking purposes, Assessment of flour quality and characteristics, Milling of Durum wheat, Macaroni products.	9	-
III	Dry and Wet milling of corn, Starches and its conversion products, Cornflakes Manufacture. Malting of barley	9	-
IV	Milling of legume-pulses by traditional and improved processes. Pearling of Millets.	9	-
V	Processing of oil seeds for direct use and consumption, Oil and protein products. Processing of extracted oil refining, hydrogenation, interesterification. Processing of deoiled cake into protein concentrates and isolates, Textured protein, Functional protein preparations. Peanut butter, Margarine and Spread	9	-
	Total	45	-

Suggested Books:

S.N.	AUTHOR	TITLE
1	C.F.T.R.I. Mysore	Manuals on Rice and its Processing
2	S.A.Matz	Cereal Technology
3	S.A.Matz	Bakery Technology
4	N.N.Potter	Food Science

Course Tit	le	FOO	D ENG	INEER	ING-I	II								
Course cod	le	PCFE	T-3491											
Category		Profes	ssional	Core Co	ourse									
Scheme an	d	L			Т		Р		С		Semes	ter VI		
Credits		3			0		0		3					
Pre-requis	ites (if	Under	stand t	ne theor	y and a	pplicati	on of b	asic foc	d engin	eering	operatio	ns.		
any)														
Course		The o	bjective	e of this	course	is to im	ipart							
Objectives			• To	illustra	tes vari	ous asp	ects of t	food en	gineerii	ng				
			• To	underst	and me	chanisr	n of ma	ss trans	ster in fo	od pro	cessing	tion and	1:	
			• EX	raction	e metno	bus of g	as adso	rpuon,	Distilla	.1011, Cr	ystamza	uon and	inquia-ne	luia
Course Ou	tcomes	L	UAI	laction										
On the suc	ccessful	comple	etion of	the cou	irse, stu	dents w	ill be a	ble to						
CO1	Under	rstand tl	ne mass	transfe	r opera	tion in f	food ma	terials				Under	standing	
													C	
<u> </u>	Emplo											Under	at a u d'u a	
02	Ехріа	in the g	as abso	rpuon p	rocess							Under	standing	
CO3	Interp	ret psyc	chometr	ic chart	s to det	ermine	the proj	perties	of air ar	nd its		Apply	ing	
	applic	ations i	n dryin	g, humi	dificati	on and	dehumi	dificatio	on proce	ess				
CO4	Solve	the Equ	he Equilibrium for immiscible and partially miscible systems and use of Applying											
	triang	ular dia	ar diagrams											
CO5	Under	uctor d t		alidiaa	thomas	for one	and me	ma comb	otos Cl	i.	ntion	Undon	atondina	
05	Liquid	fstand u	tand the gas solid isotherms for one and more sorbates, Chemisorption, Understanding											
	Liquit	a una se	and some isomerni and Distinution process.											
СО-РО Ма	apping													
1: Slight (L	.0W)	2: Mod	: Moderate (Medium) 3: Substantial (High) "-": No Correlation											
COs	POs												PSOs	
	DO1	DO1	DO1	DO4	DO5	DOC	D07	DOO	DOO	DO1	DO1	DO1	DCO1	DCO2
	PUI	PO2	PUS	PU4	P05	PUo	PU/	PUð	P09		1	2	P501	P502
CO1	3	3	2	1	2	3	-	-	-	-	2	-	2	3
	2	2	2	1	1	2					2		2	2
02	3	3	2	1	1	2	-	-	-	-	3	-	2	3
CO3	3	2	2	2	2	3	-	-	-	-	3	2	3	3
CO4	3	2	3	2	2	2	-	-	-	-	2	2	3	3
CO5	3	3	3	2	2	3	-	-	-	-	3	2	3	3
Average	3	2.6	2.4	1.6	1.8	2.6	-	-	-	-	2.6	1.2	2.6	3

Module		Contents	L	T			
			(Hours)	(Hours			
Ι	Mass transfer: Diffusion ar diffusion in solids and fluids	nd Mass Transfer in Food Materials: Molecular E: Fick's 1st law for molecular diffusion, diffusion	9	-			
	molecular diffusion in biolo solids, diffusion coefficient steady state diffusion,	ogical solutions and gels, molecular diffusion in s in gas, liquid and solid, numerical solution of					
II	Gas Absorption: Equilibrium driving force, individual and	n relationship, mass transfer theories, concept of d overall mass transfer coefficients.	9	-			
III	Air properties, dry and wet Humidity charts, Methods conditioning	bulb temperature, Wet and dry bulb hygrometry, of humidification and dehumidification, Air	9	-			
IV	Liquid- Liquid Extraction: H systems, Use of triangular c current and counter- current formation, Crystal growth, crystallization, Fractional cr	9	-				
V	Adsorption: Gas solid isoth Liquid and solid isotherm, A operation, non-isothermal o supercritical extraction. L distillation, vacuum distillat	erms for one and more sorbates, Chemisorption, Adsorption unit- Fixed bed equations, Isothermal peration, pressure swing adsorption, Extraction, eaching Distillation, steam distillation, batch ion	9	-			
	Total		45	-			
L: Lectur	e. T: Tutorial. P: Practical. C: C	redits, CO: Course Outcomes, PO: Program Outco	omes.				
PSO: Pro	gram Specific Outcomes		,				
Suggested	Books						
S.N.	AUTHOR	TITLE					
1	Chanes J.W., Gustavo (2002)	Engineering and Food for the 21st Century CRC	C Press.				
2	R. Paul Singh	Introduction of Food Engineering					
3	Heldman and Singh	Food Process Engineering					
4	R.T. Toledo Fundamentals of food process Engineering						

Course T	litle	FO	OD EN	GINE	RING	-III LA	B							
Course c	ode	PCI	FET-30)492										
Category	7	Pro	fession	al Core	e Cours	se								
Scheme a	and		L			Т	F)		С	Sem	ester V	I	
Credits			0			0	2	2		1				
Pre-requ	isites													
(if any)														
Course		The	object	ive of	this cou	urse is	to impa	art						
Objectiv	es		Тос	lemons	strate th	ne appl	ication	s of cu	rrent ar	nalytica	al and in	nstrume	ntal techi	niques.
			Тое	exhibit	practic	al skill	s in the	e condu	ict of la	aborato	ory scale	e experi	ments rel	ated to
			the	food in	dustry.									
Course C)utcon	ies												
On the su	ccessfi	il com	oletion	of the	course	studer	nts will	be abl	e to					
CO1	App	ly the a	ppropr	iate me	ethod a	nd inst	rument	to per	form ex	xtractic	on of	Apply	ving	
	oil fi	om foo	od sam	ples				1				11.		
				L										
CO2	Unde	erstand	the dis	tillatio	n proce	ess of d	listilled	water				Unde	rstanding	5
CO3	Evn	oin the	diffor	ant dru	ing ma	thode a	nd aug	lity of	dried f	oods		Unda	rstanding	r
005	Ехр	am me	uniere		ing me	mous a	ina qua	III Y OI	uneu n	oous		Unde	Istanding	
CO4	Exp	xplain about the basics, working principle, applications of Understanding												
	hum	imidification method used in food industry												
CO5	Exp	lain abo	out the	basics,	worki	ng prin	ciple, a	applicat	tions of	f		Unde	rstanding	5
	dehu	imidifie	cation	method	l used i	n food	indust	ry						
~~ ~ ~ ~ ~														
CO-PO N	Aappir	ng												
	1 · Sliøł	nt (Low	2	Mode	rate (N	ledium) 3.	Substa	ntial (F	High)	۲ <u>.</u> "۰	No Corr	elation	
COs		n (Lon)	101040	1410 (11	PO	<u>, .</u> S	Substa		<u></u>	. 1		PSC)s
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Ρ Ο1	PO1	PSO1	PSO2
	1	$\frac{10}{2}$	3	10 4	5	6	7	8	10 Q	10	1	2	1501	1502
CO1	2	1	1	- - 1	2	2 2	/	0	,	10	1	1	2	3
	5	1	1	1			-		_	-	1	1	2	3
02	2	2	2	-	2	2	-	-	-	-	2	-	3	2
CO3	3	2	3	-	2	3	-	-	-	-	1	1	2	2
CO4	3	2	2	2	2	2	-	-	-	-	2	-	2	2
CO5	3	2	2	1	2	2	-	-	-	-	2	-	2	2
Average	2.8	1.8	2.0	0.8	2.0	2.2	-	-	-	-	1.6	0.4	2.2	2.2

List of Pr	actical
S.N.	Practical
1	Experiment on extraction of oil from food samples.
2	Experiment on distillation process for production of distilled water.
3	Experiment of absorption of water by dried food product / grain.
4	Experiment on crystallization process in food processes.
5	Experiment on humidification process in food processing
6	Experiment on dehumidification process in food processing
7	Visit to related food industry
L: Lectur	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Pro	ogram Specific Outcomes
Reference	e Books and Suggested Readings:
S.N.	
1	Laboratory Manual
2	BIS and AOAC Methods of Food analysis
3	FSSAI Manual
4	Theodoros V.C., Food Engineering Handbook (2011) CRC Press
5	Toledo, R. T. (1997). Fundamentals of Food Process Engineering (2 ed.): CBS Publications,
	New Delhi.

Course T	Stla	FOOD PRESERVATION AND PROCESSING PRINCIPLES LAB												
Course I					VAII	UN AI	ND PK	UCES	SING	PKIN		5 LAD		
Course c	ode	PU	rei-su	$\frac{1493}{100}$	Cour									
Schomo	and	PIO	T			же Т	г)		C	Som	ostor V	T	
Credits	anu		 			0	1	5		3	Sell	iester v	1	
Pre-requ	isites	kno	wledge	of for	n nres	ervatio	n svete	, m		5				
(if any)	151105	Des	irable_	- Know	vledge (of basi	n syste. 2 proce	ssing o	of instru	iments				
(II any) Course		The	ohiect	ive of	this co	urse is	to imp	art	1 1115010	aments	•			
Objectiv	P6	TIC	• Th	e know	vledge :	ahout r	reserv	ation of	f food l	ov diffe	erent m	ethod		
Objectiv	65		• Th	e know	ledge a	about t	he imp	act of r	preserva	ation o	n nutrit	ion & sl	helf life o	of food
Course (Jutcon	ies					r	r						
On the su	aaaaf	1	alation	oftho		atuda	ata	ha ahl	a ta					
CO1	Und	erstand		of the	f differ	ent kin	ds of f	oods ar	e io 1d their	•		Unde	rstanding	T
COI	nres	ervatio	n	551112 0			us 01 1	0003 01		L		Onde	istanding	>
	pres	ci valio												
CO2	App	ly vario	ous low	and h	igh ten	nperatu	re for p	preserv	ation			Appl	ying	
CO3	Ann	lucam	otio oo	noontro	tion or	d dahr	dration	math	od for r	racart	ation	Appl	vina	
COS	App	iy osm	ouc col	ncentra	uion ar	ia aeny	aration	1 metric	oa ior j	breserv	ation	Appi	ying	
	01 IC	or roods of our and organ.												
CO4	Ann	pply the natural preservation methods like sugar, salt and processing Applying												
004	of ia	iam jelly fruit juices												
	01 Ju	····, j •···	,	Jureest										
CO5	Und	erstand	l the pr	ocessir	ng of va	arious l	oakery	produc	t like b	oread,		Unde	rstanding	5
	biscu	cuit, buns												
CO-PO N	Aappir	ng												
	1 · Clial	ht (Low) 2. Madamata (Madium) 2. Substantial (Uiah) ""N. Comaldi												
COs	r. Siigi	II (LOW	() 2.	widde		PO)). s	Subsia	initial (1	ngn)	1)6
005	DO	DO	DO	DO	DO			DO	DO	DO	DO1	DO1		DCOO
	PO 1	PO 2	PO 2		PO 5	P0 6	PO 7	PO e		10 PO		PO1	P501	PS02
CO1	1 2	1	1	-	2	2	/	0	,	10	1	2	1	2
	2	1	1	-	2	2	-	-	-	-	-		1	
002	3	2	3	2	2	3	-	-	-	-	-	2	3	3
CO3	1	2	2	2	2	3	-	-	-	-	-	1	2	3
CO4	2	2	2	3	3	3	-	-	-	-	-	2	2	3
CO5	1	3	3	3	1	3	-	-	-	-	-	2	3	3
Average	1.8	2	2.2	2	2	2.8	-	-	-	-	-	1.8	2.2	2.8

List of Pr	actical
S.N.	Practical
1	Extension of shelf life/ preservation of foods by use of low temperature.
2	Processing and preservation of Peas by use of high temperature.
3	Preservation and processing of certain vegetables by drying and dehydration (water removal)
4	Osmotic concentration/dehydration of certain fruits and vegetables using concentrated sugar and salts solutions (reduction in water activity)
5	Preparation of Jam/Jelly and its preservation by sugar.
6	Preparation of tomato puree/ketchup and its preservation by chemical preservatives.
7	Preparation of fruit juice/pulp and its preservation by chemical preservatives/thermal processing.
8	Preparation of cordials and squash as per FPO specification.
9	Preparation of Bread/test baking.
10	Pre-treatment and milling of legume-pulses / dehulling of oil seeds.
11	Preparation of certain baked products – Buns, Biscuits, Cookies, Cakes, Pizza etc.
L: Lectur	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Pro	ogram Specific Outcomes
Reference	e Books and Suggested Readings:
S.N.	
1	G.Lal, G.S.Siddappa & G.L.Tondan- Preservation of Fruits and Vegetables
2	S.C.Dubey- Basic Baking: Science and Craft
3	E.J.Pyler- Baking Science and Technology

SEMINAR (FET-30495)

L: T: P: C 0: 0: 2: 1

The student will be required to prepare and deliver a seminar as well as submit a written report on the topic assigned to him/her

Course 7	Title	FRUITS, VEGETABLES & PLANTATION PRODUCTS												
Course c	ode	PC	FET-44	481										
Category	7	Pro	fessior	al Cor	e Cours	se								
Scheme a	and		L			Т	H	D		С	Sem	ester V	II	
Credits			3			0	()		3				
Pre-requ	isites	Nor	ne.				•							
(if any)		Des	sirable	– Basio	c know	ledge o	of food	d comp	osition	and u	nit oper	ations		
Course		The	e objec	tive of	this co	urse is	to imp	art						
Objectiv	es	•	The	knowle	dge ab	out pro	ocessin	ig and p	preserv	ation o	of variou	is fruits	, vegetał	oles and
			their	produc	cts									
		•	The	knowle	dge ab	out pro	oductio	on proc	ess of t	tea, cof	fee, cho	ocolate,	various	dry
			fruit	s and th	neir pro	oducts		-						-
					-									
Course (Outcon	nes												
On the su	iccessfi	ul com	pletion	of the	course	, stude	nts wil	l be ab	le to					
CO1	Unde	rstand	tand the basic concepts about structure and composition of fruits Understanding											
	and v	egetab	les											
CO2	Apply	y the te	chnolo	gy for	produc	tion of	f varioı	is fruits	s and v	egetab	le	Apply	ing	
	produ	icts												
CO3	Apply	y the technology for processing of various spices and their Applying												
	produ	icts												
CO4	Apply	y the te	chnolo	gy for	produc	tion of	f dry fr	uits, tea	a, coffe	e, coco	ba	Apply	ing	
	beans	and their products												
		-												
CO-PO N	Mappir													
	F F	-8												
1: Slight ((Low)	2: N	Ioderat	te (Med	lium)	3: Si	ubstant	tial (Hi	gh)	"-": N	o Corre	lation		
						D (DC	
COs		POs									PSC	Ds		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	-	-	-	-	-	-	-	-	2	2
CO2	3	2	2	2	-	-	-	-	-	-	-	-	3	3
CO3	3	2	2	2	_	_	-	-	_	-	-	-	3	3
CO4	3	2	2	2	_	_	-	-	_	-	-	-	3	3
Average	2.8	2.0	2.0	1.8	-		-	-	_	-	-	-	2.8	2.8

Detailed (Contents		
Module	Contents	L (Hours)	T (Hours)
I	Structural, Compositional and Nutritional aspects of fruits and vegetables. Physiological development: Growth, Maturation, Ripening and Senescence. Post harvest handling including controlled and modified storage. Techniques of processing and preservation of fruits & vegetables by refrigeration and freezing, canning and bottling, drying & dehydration.	9	-
п	Technology of fruits and vegetable products: Juices and pulps, Concentrates and powders, Squashes and cordials. Beverage: Still and carbonated. James, Jellies and Marmalades. Preserves, candies and crystallized fruits. Tomato products: Puree, Paste, Ketchup, Sauce and soup. Chutneys, pickles and other products.	9	-
III	Spices: Composition, Structure and characteristics. Preservation and processing of major and minor spices of India; whole spice, Spice powder, Paste and extracts, Spice oils and oleoresins.	9	-
IV	Composition, Structure and characteristics of cashew nut and other dry fruits. Composition, Production and processing of Tea Leaves: Black tea, Green tea and Oolong tea. Instant tea. Production and processing of coffee cherries by wet and dry methods to obtain coffee beans, grinding, storage and preparation of brew, Soluble /Instant coffee, Use of chicory in coffee, decaffeinated coffee	9	-
V	Production, processing and chemical composition of cocoa beans. Cocoa Processes: Cleaning, roasting, alkalization, cracking and fanning, Nib grinding for cocoa liquor, cocoa butter and cocoa powder. Manufacturing process for chocolate: Ingredients, Mixing, Refining, Conching, Tempering, Moulding etc. to obtain chocolate slabs, chocolate bars. Enrobed and other confectionery products.	9	-
	Total	45	-
L: Lectur PSO: Pro	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outco ogram Specific Outcomes	omes,	1
Suggested	Books/References:		
S.N.			
1	Lal, G., Siddappa, G. S., & Tandon, G. L. (1960). Preservation of fruits and vege Council of Agricultural Research.	etables. I	ndian
2	Srilakshmi, B. (2003). Food science. New Age International.		
3	Minifie, B. (2012). Chocolate, cocoa and confectionery: science and technology. & Business Media.	Springer	r Science
4	R.H.H. Wills et.al., An introduction to the Post-harvest physiology and handling vegetables	of fruits	and
5	Ramaswamy, H. S. (2014). Post-harvest technologies of fruits & vegetables. DE Publications, Inc.	Stech	
6	Peters, K. (2019). Technology of fruits and vegetable processing.		

Course 7	Title	FO	OD Q	UALII	Υ									
Course c	ode	PCI	FET - 4	482										
Category	/	Pro	fession	al Cor	e Cours	se								
Scheme a	and		L			Т	I)		С	Sem	nester-V	II	
Credits			3			0	()		3				
Pre-requ	isites	Kno	wledge	e of foc	d char	acterist	tics.							
(if any)														
Course		The	e object	ive of	this co	urse is	to imp	art						
Objectiv	es		• Th	e know	ledge	of vari	ous qua	ality att	ributes	s of foo	d.			
			• Th	e know	ledge	of the 1	oles of	variou	is gove	rning b	odies f	or main	taining fo	bod
			qua	ality sta	andard	S								
			• Th	e know	ledge	of qual	ity eva	luation	metho	ods and	prograi	ms		
Course (Outcon	nes												
On the su	iccessfi	ul com	pletion	of the	course	, stude	nts will	l be abl	e to					
CO1	Und	Understand food quality, quality deterioration, quality control programs, Understanding												
	quali	ty assu	rance s	ystems	, produ	ct qual	lity star	ndards	for the	food in	dustry		2	2
	-													
CO2	Eval	valuate food attributes organoleptically and instrumentally Evaluating												
													_	
CO3	Appl	y techr	niques	to cont	rol det	eriorati	ion in f	iood qu	ality d	ue to v	arious	Appl	ying	
	chang	ges in p	process	ing and	i storag	ge								
CO4	Imple	ement	anality	mana	rement	eveter	me to i	oroduce	a the f	ood pr	oducts	Apply	vina	
0.04	with	consistent quality as per standards and specifications												
	wittii	consistent quality as per standards and specifications												
CO-PO N	Jannii	ıα												
	appi	ig												
	1: Sligl	nt (Low	v) 2:	Mode	rate (N	ledium	a) 3:	Substa	ntial (1	High)	"-": Ì	No Corr	elation	
COs						PO	S						PSC)s
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	2	3	2	1	3	-	-	-	-	-	1	3	3
CO2	3	3	3	3	3	3	-	_	-	-	_	1	3	3
CO3	3	3	3	3	1	3	-	-	-	-	-	1	3	3
CO4	2	1	3	2	3	3	-	-	-	-	-	2	3	3
Average	2.5	2.3	3.0	2.5	2.0	3.0	-	-	-	-	-	1.3	3.0	3.0

Detailed	Contents		
Module	Contents	L	T
I	Ways of describing Food Quality, Quality programs and quality systems for the food industry: Quality control programs, Quality assurance systems, Quality management systems, Total quality management (TQM), Quality system standards, ISO quality management system. Statistical quality control (SQC). Quality costs	(Hours) 9	(Hours) -
П	Application of sensory evaluation in Quality Management of foods. Analysis and Interpretation of sensory scores. Instrumental measurements of sensory attributes of foods: Appearance, color, volume, density and specific gravity, rheological and textural characteristics, Texture profile analysis (TPA). Correlation between instrumental and Sensory analysis of food quality attributes.	9	-
III	Nutritional Quality of foods and its assessments: Food proteins (Digestibility, Biological value, NPU, PER), Modifications of foods constituents due to processing and storage and their nutritional implications.	9	-
IV	Chemical and biochemical reactions that can lead to deterioration of food quality and their effects. Microbiological quality of foods. Application of chemical analysis in quality control.	9	-
V	Food standards and Specifications: Compulsory and voluntary trade and Company standards. Consumer, company, In-process and finished product specifications.	9	-
	Total	45	-
L: Lectu PSO: Pro	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Out ogram Specific Outcomes	comes,	1
Suggestee	l Books/References		
S.N.			
1	Medina, D. A., & Laine, A. M. (2011). Food Quality: control, analysis and con Nova Science Publishers.	nsumer co	ncerns.
2	Deshpande H.W. Katke S., Food quality assurance and certification		
3	Prem Kumar Jaiswal, Food quality and safety		
4	Luning, P. A., Marcelis, W. J., & Jongen, W. M. F. (2002). Food quality manage technicol managerial approach. Wagoningon Pare Wagoningon The Netherlan	gement. A	
5	Theuvsen, L., Spiller, A., Peupert, M., & Jahn, G. (Eds.). (2007). Quality mana chains	gement in	food
6	Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: principles 2). New York: Springer.	and practi	ces (Vol.
7	Kapiris, K. (Ed.). (2012). Food Quality. BoD–Books on Demand.		

Course Ti	tle	ENT	REPRE	ENEUI	RSHIP	DEVE	ELOPN	AENT						
Course co	de	OEHU	J-4483											
Category		Open	Electiv	re e										
Scheme ar	nd		L			Т		Р		С	Seme	ester VI	[
Credits			2			0		0		2				
Pre-requis	sites	None	e.		•									
(if any)		Desi	rable-											
Course		The	objecti	ve of th	nis cou	rse is to	o impai	t						
Objectives	5		K	nowled	lge abo	ut vario	ous qua	alities r	require	d for er	ntrepren	eurship)	
			Kı	nowled	ge abo	ut vario	ous ent	reprene	eurship	model	ls	٩		
			KI	nowled	ige abo	ut vario	ous too	is and	technic	jues lik	te five S			
Course Ou	utcome	es												
On the suc	cessful	l comp	letion of	of the c	ourse,	student	ts will l	be able	to					
		1												
CO1	Under	Jnderstand the qualities of entrepreneurs, various entrepreneurship Understanding												
	Mode	ls, vari	ous sch	nemes s	support	ing ent	repren	eurship	, comp	oany lav	ws,			
	regula	tions a	nd inco	orporat	ion									
CO2	Evalu	ate demand, feasibility, risks, economic viability, expected costs to Evaluating												
	Identif	y, plan	and con	itrol pro	ojects									
CO3	Dropo	ro holo	noo ch	acto fi	noncial	ronort		unto on	datora	a atudi	0.0	Apply	ina	
COS	Flepa	re balance sneets, financial reports, accounts and stores studies Applying												
	•													
СО-РО М	apping	5												
	1:Slig	pht(Loy	w) 2	:Mode	rate(M	edium)	3:8	ubstan	tial(Hi	gh)	"-": No	Correl	ation	
COs	<u> </u>					POs				0 /			PSOs	6
	PO1	PO2	PO3	PO 4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	101	102	105	104	105	100	107	100	107	1010	1011	1012	1001	1502
	1	1	1	1		·)			3	2	2	2	2	1
000	1	1	1	1	I	2	-	-	3	2	2	2	2	1
CO2	1 2	1 3	1 3	1 2	1 3	2	-	-	3 3	2 2	2 3	2 2	2 2	1 2
CO2 CO3	1 2 1	1 3 1	1 3 1	1 2 1	1 3 2	2 2 -	-	-	3 3 -	2 2 -	2 3 3	2 2 -	2 2 2	1 2 1

Module	Contents	L	Т
liouuic		(Hours)	(Hours)
I	Entrepreneurship- definition. growth of small scale industries in developing countries and their positions vis-a-vis large industries; role of small scale industries in the national economy; characteristics and types of small scale food industries; demand based and resources based ancillaries and sub-control types. Government policies for small scale industry; stages in starting a small scale industry	6	-
Π	Project identification- assessment of viability, formulation, evaluation, financing, field-study and collection of information, preparation of project report, demand analysis, material balance and output methods, benefit cost analysis, discounted cash flow, internal rate of return and net present value methods.	6	-
III	Accountancy- Preparation of balance sheets and assessment of economic viability, decision making, expected costs, planning and production control, quality control, marketing, industrial relations, sales and purchases, advertisement, wages and incentive, inventory control, preparation of financial reports, accounts and stores studies.	6	-
IV	Project Planning and control: The financial functions, cost of capital approach in project planning and control. Economic evaluation, risk analysis, capital expenditures, policies and practices in public enterprises. profit planning and programming, planning cash flow, capital expenditure and operations. control of financial flows, control and communication.	6	-
V	Incorporation of company, Laws concerning entrepreneur viz, partnership, business ownership, GST, environment and workman compensation etc. Role of MSME, various national, state agencies which render assistance to small scale industries.	6	-
	Total	30	-

L: Lecture, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes, PSO: Program Specific Outcomes

Suggested Books/References

S.N.	AUTHOR	TITLE					
1	Dr. Gupta & Dr. Srinivasan	Entrepreneurship Development in India					
2	Vasant Desai Dynamics of Entrepreneurial Development and Managemer						
3	T.N.Chhabra Entrepreneurship Development						
4	Dr.R.K.Singal.Shruti Singal Entrepreneurship Development						
5	Forbat, John, "Entrepreneurshi	o" New Age International.					
6	Havinal, Veerbhadrappa, "Man	Havinal, Veerbhadrappa, "Management and Entrepreneurship" New Age International					
7	Joseph, L. Massod, "Essentials	of Management", Prentice Hall of India.					

Course Title	NUTRITIONAL ASPECTS OF NATURAL & PROCESSED FOODS									
Course code	OEFET-									
Category	Open Elective Course									
Scheme and	L	Т	Р	С	Semester VII					
Credits	3	0	0	3						

Module	Contents	L	Т
		(Hours)	(Hours)
Ι	Food and its functions, Role of nutrients, Effects of deficient or excess intake of the individual essential nutrients. Recommended Dietary Intakes (RDI) and its uses. Factors affecting nutritional requirement of an individual.	10	-
Π	Composition of Foods: General and Specific for different foods of plant and animal origin. General causes. of loss, of nutrients. Nutritional changes during processing & storage and their implications. Potentially undesirable constituents in foods. Restoration, Enrichment, Fortification and Supplementation of foods.	10	_
III	Digestion, Absorption and Metabolism of food in human body.	6	-
IV	Balanced diets for normal individuals. Therapeutic diets for people suffering from various ailments and disorders. Functional foods.	10	-
V	Assessment of calorific value and nutritional quality of natural and processed foods by chemical and biological means. Sensory qualities and acceptability of foods.	9	
	Total	45	-
L: Lectur	e. T: Tutorial. P: Practical. C: Credits. CO: Course Outcomes. PO: Program Outcom	es.	
PSO: Pro	gram Specific Outcomes	7	
Suggested	Books/References:		
S.N.			
1	Dietetics' by B. Srilakshmi, H' edn., New Age International (P)Ltd.New Delhi.		

L	Dietetics by B. Smaksinni, H edil, New Age international (P)Ltd. New Denn.
2	'Nutrition and Dietetics' by Shubhangini A. Joshi, Tata McGrawHill Co.Ltd
3	'Nutritive Value of Indian Foods' by C. Gopalan, B.V. Ramasastri and S.C. Balasubramanian
	NIN, Hyderab
4	'Food Chemistry' by O.R. Fennema, 2' edn. Marcel Dekkar Inc.
5	'Basic Nutrition in Health & Disease' by P. S. Howe, W.B. Saunders Company London.

Course Title	FOOD PRODUCT DEVELOPMENT & SENSORY EVALUATION										
Course code	PEFET-										
Category	Professional Election	ve Course									
Scheme and	L	Т	Р	С	Semester VII						
Credits	2	0	0	2							

Detailed (Contents		
Module	Contents	L	Т
		(Hours)	(Hours)
I	Innovation and product development concept. Generation of ideas. Desk Research. Screening/ appraisal of initial ideas. Detailed study of product, process and market, Planning and developmental activities and evaluating them. Development of prototype product and its testing for acceptance. Development of process and planning for production trials. Planning the test market. Actual production trials and test marketing. Evaluation of test results. Launching of the product. Advertising and marketing plans. Suggestions for improving success.	8	-
Π	Overview of sensory principles and practices: General consideration in sensory testing, flowcharts of sensory evaluation. Anatomy, physiology and function of various senses. Chemesthesis, multi-modal sensory interactions. Test protocol considerations and experimental design, Tabulation and analysis.	7	-
III	 Psychological methods: Selection and screening of panel, types of panel. Maintaining suitable environmental conditions: laboratory setup and equipments. Sample preparation. Methodology for sensory evaluation: Difference, Rating, Sensitivity tests. Descriptive analysis techniques: Flavor profile, Quantitative descriptive analysis,Texture profile, Sensory spectrum. Sensory texture measurements. Context effects and biases in sensory judgment. 	8	-
IV	Basic statistical concepts for sensory evaluation: Hypothesis testing and sensory inference, variation of T Test, Nonparametric and binomial based, Statistical methods, Chi-square test, analysis of variation, Correlation regression	7	-
	Total	30	-
L: Lectur	e, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcom	les,	1
PSO: Pro	gram Specific Outcomes	,	
Suggested	Books/References:		
S.N.			
1	MacFie, H. (Ed.). (2007). Consumer-led food product development. Elsevier.	<u> </u>	
2	Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: principles and 2). New York: Springer.	d practice	s (Vol.

Course Title	POST HARVEST MANAGEMENT OF FRUITS AND VEGETABLES									
Course code	PEFET-									
Category	Professional Elective Course									
Scheme and	L	Т	Р	С	Semester VII					
Credits	2	0	0	2						

Module	Contents	L	Т
		(Hours)	(Hours)
I	Harvesting vs. physiological maturity, Harvester indices, Importance & scope of post harvest management of fruits and vegetables in Indian economy, methods of maturity determinations, Physiological post harvest disorders - chilling injury and disease; prevention of post harvest diseases and infestation.	8	-
II	Causes of post-harvest losses, Factors affecting post harvest losses; Standards and specifications for fresh fruits and vegetable. Harvesting and handling of important fruits and vegetables, Harvesting tools and their design aspects; primary processing for sorting and grading at farm and cluster level	8	_
III	Post-harvest physiological and biochemical changes in fruits and vegetables; ripening of climacteric and non-climacteric fruits; Storage practices: pre-cooling and cold storage, Zero energy cool chamber; Commodity pretreatments - chemicals, wax coating, prepackaging, VHT and irradiation.	7	-
IV	Handling and packaging of fruits and vegetables; Post Harvest handling system for fruits and vegetables of regional importance such as citrus, mango, banana, pomegranate, tomato, papaya and carrot etc., packaging house operations; principles of transport and commercial transport operations.	7	-
	Total	30	-

PSO: Program Specific Outcomes

Suggested Books/References:

G N	
S.N.	
1	Kadar AA.1992. Post-harvest Technology of Horticultural Crops. 2nd Ed. University of California.
2	Lal G, Siddapa GS & Tandon GL.1986. Preservation of Fruits and Vegetables. ICAR.
3	Verma LR. & Joshi VK. 2000. Post Harvest Technology of Fruits and Vegetables. Indus Publ.
4	Agmark standards by DMI, GoI.
5	Cold chain standards by NHB, GoI.

Course 7	Title	ENG	ENGINEERED, TEXTURIZED & FABRICATED FOODS											
Course c	ode	PEFE	ET - 448	4										
Category	7	Profe	essiona	l Electi	ive Cou	ırse								
Scheme a	and		L			Т	I	2		С	Sem	nester V	II	
Credits			2			0	()		2				
Pre-requ	isites	The	knowle	dge ab	out ext	ruded f	food pr	oducts	and te	xtured	vegetab	le prote	in produ	cts
(if any)														
Course		The objective of this course is to impart												
Objectiv	es		• Kn	lowledg	ge aboi	it the w	vorking	g of equ	iipmen	t and p	rocess t	echnolo	ogy of ex	truders
			• Kn	owledg	ge aboi	it the p	rocess	techno	logy fo	or textu	red veg	etable p	protein pr	oducts,
			1m	itation	milk ai	nd vari	ous eng	gineere	d & fal	oricated	d food p	products		
Course (Outcon	nes												
On the su	looosf	ul com	nlation	of the	0011800	studor	nto will	ba abl	a to					
CO1	Ant	ulv ext	rusion a	rooking	g proce	ss met	hods us	$\frac{1}{1}$ be abl	c io food ind	dustry	for	Apply	vino	
COI	pro	duction	1 of var	ious ex	truded	produ	cts			usuy	101	Appi.	yiiig	
	Pro		action of various extrauce products											
CO2	App	ply the	techno	logy fo	or produ	uction	of textu	ired ve	getable	e protei	n	Appl	ying	
	pro	ducts												
		1 .1		1 0			1	. 17					•	
CO3	App	ply the	techno	logy fo	or proce	essing o	of fabri	cated H	TS be	verage	S,	Appl	ying	
	bak	ery pro	ducts,	1mitati	on mill	ks, wea	ining, t	herape	utic, ge	eriatric	and			
	vari	lous of	her suc	h foods	8									
CO-PO N	Марріі	ng												
	1 · Slie	oht (Lo	w) 2.	Moder	ate (Me	dium)	3.5	Substan	tial (H	ioh)	"_"· N	o Corre	lation	
COs		5111 (120		linducit		PO	<u>5. c</u>	Juostan	(11	1511)	. 1 (0 00110	PSC)s
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	2								3	3
CO2	3	2	1	1	2								3	3
	5	2			2	-	-	-	-	-	-	-	3	3
03	3	2	1	1	2	-	-	-	-	-	-	-	3	3
Average	3.0	2.0	1.0	1.0	2.0	-	-	-	-	-	-	-	3.0	3.0

Detailed (Contents							
Module		Contents	L	Т				
			(Hours)	(Hours)				
Ι	Extruders. Single Screw & Mu Extrusion cooking. Physical &	ltiple Screw Extruders. Extrusion process. Chemical Changes during Extrusion Process.	7	-				
II	Textured vegetable protein pro Analogues., Imitation Paneer	5	-					
III	Fabricated RTS Beverages, Ba Imitation Milks Designer Lipic	7	-					
IV	Weaning Foods/ Baby Foods.	6	-					
V	Technology and manufacture of	5	-					
	Total	30	-					
L: Lectur	re, T: Tutorial, P: Practical, C: Ci	redits, CO: Course Outcomes, PO: Program Outc	omes,	•				
PSO: Pro	ogram Specific Outcomes							
Suggested	l Books							
S.N.	AUTHOR	TITLE						
1	S.A. Matz	Cereal Technology, CBS Publishers						
2	Zeki Berk Food Process Engineering and Technology, Academic Press							
3	Shubhangini A. Joshi Nutrition and Dietetics, Tata McGraw-Hill Education, 2010							

Course Tit	tle NUTRACEUTI	CAL & FUN	CTIONAL F	OODS								
Course co	de PEFET -											
Category	Professional Elec	tive Course										
Scheme an	nd L	Т	Р	С	Semes	ter- VII						
Credits	2	0	0	2								
Detailed Co	ontents		·	·	·							
Module		Con	tents			L	Т					
						(Hours)	(Hours)					
Ι	Defining nutraceutical	s and function	onal foods, N	lature, type ar	nd scope.	6	-					
	Nutraceuticals and fund	ctional foods	applications a	nd their health	benefits,							
	classification based on chemical and biochemical nature with suitable and relevant descriptions											
П	Nutraceuticals for spec	Nutraceuticals for specific situations such as cancer . heart diseases. stress. 6 -										
	Osteoarthritis, hypertension etc. Antioxidants and other phytochemicals,											
	isoflavones, lycopenes, their role in nutraceuticals and functional foods,											
	dietary fibers and complex carbohydrates as functional food ingredients.											
III	Protein as a functional food ingredient, Probiotic foods and their functional 6 -											
	role ,Herbs as functional foods, health promoting activity of common											
	nerbs. Cereals products as functional foods- Oats, Wheat bran, rice bran											
IV	Functional vegetable products oil seeds and sea foods. Coffee tea and 6											
	other beverages as fun	ctional foods	drinks and	their protectiv	e effects.	0						
	Effects of processing a	nd storage and	d interaction o	f various envir	onmental							
	factors on the potential	s of such food	ds.									
V	Marketing and regulate	ory issues for	r functional f	oods and nutra	aceuticals	6	-					
	Recent developments	and advance	s in the area	a of nutraceut	icals and							
	Tunctional foods.											
	Total					30	-					
L: Lecture	, T: Tutorial, P: Practical,	C: Credits, C	O: Course Ou	itcomes, PO: P	rogram Ou	itcomes,						
PSO: Prog	ram Specific Outcomes											
Suggested I	Books											
S.N.	AUTHOR		TITLE									
1	Robert E.C. Wildman,	Robert	Handboo	ok of Nutraceut	ticals and I	Functional H	Foods					
	Wildman, Taylor C. W	allace										
2	Kobert E.C. Wildman, Medeiros	Denis M.	Advance	d Human Nutr	111011							
3	Flavors for nutraceutica	al and	M. Selva	muthukumara	n and Yash	want V. Pa	thak					

functional foods

Course T	!: 4]o	DA	VFDV		CONE	ЕСТІ					7					
Course I	lue	DA			CONF	EUII	UNAK			LUGI	_					
Course c	ode	PCI	TE1-44	10	0											
Category	7	Pro	tession	al Core	e Cours	se T	г	<u> </u>		0	G	4 37				
Scheme a	and					1	ł	, ,		$\frac{C}{2}$	Sem	ester V	ester v II			
Credits			3			0	()	3							
Pre-requ	isites	Nor	ne.													
(if any)		Des	arable-	- Know	ledge (of basic	c cerea	l produ	cts.							
Course		The	e object	tive of t	this cou	arse is	to impa	art								
Objectiv	es		• Kı	nowled	ge abo	ut type	s of ba	kery pr	oducts							
			• Kn	owledg	ge abou	it proce	essing a	and tec	hnolog	y used	in bake	ery and	confectio	nary		
~ ~	nurse Outeemes															
Course (Course Outcomes															
On the su	the successful completion of the course, students will be able to															
CO1	Recall the types of flour and ingredients used in bakery products and its Remembering															
	properties.															
CO2	Use the bakery equipment and machinery used in processing and Applying															
	packaging															
	Apply the technology used for production of bread and calce making Applying															
CO3	Apply the technology used for production of bread and cake making Applying															
	and their detects and remedies															
CO4	Understand the type of bakery product and their manufacturing defects. Understanding															
04	and	remedi	es		ukery p	nouuci			luracti	unig, u	ciccis	Onde	istanting	5		
	unu	lenieur	00													
CO5	App	ly the t	echnol	ogy for	· confe	ctioner	y manu	ıfacturi	ng			Apply	ying			
				0.			•		U							
CO-PO N	Aannir	וס														
00101	-uppn	-8														
	1:Slig	ht (Lov	v) 2	:Moder	rate (M	edium) 3:5	Substar	ntial (H	ligh)	"-": N	o Corre	lation			
COs						PO	S						PSC)s		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2	1	2	_	_	_	_	_	_	_	3	2		
<u> </u>	-	-	-	1	-	1						1	2	-		
02	3	1	2	1	3	1	-	-	-	-	-	1	3	3		
CO3	3	2	1	2	3	1	-	-	-	-	-	1	3	3		
CO4	2	2	3	2	1	1	-	-	-	-	-	2	2	3		
CO5	3	2	3	2	-	-	-	-	-	-	-	-	3	2		
Average	2.6	1.8	2.2	1.6	1.8	0.6	-	-	-	-	-	0.8	2.8	2.6		

Module	Contents	L	Т
		(Hours)	(Hours)
I	Wheat flour and wheat flour treatments – Grade of flour, constituents of flour – ageing of flour – Tests for flour quality. Yeast : Characteristics, Preparation, Handling & Storage, Adequacy for use in the bakery industry. Ingredients, Technology and quality parameters for baked products: Bread, Biscuits & cakes	9	-
II	Bakery equipment and machinery. Different types of Mixers, kneaders and cutters.Different types of ovens.Packaging machinery for bread and biscuits. Quality control in the bakery industry . Quality control of raw materials. Quality control of finished products. Quality control of packaging materials	9	-
III	Technology of bread making Different methods. Process steps and their significance. Characteristics of good bread. Defects in bread, their causes and remedies . Technology of Cakes Manufacturing. Different cake making processes. Sugar batter method, Flour batter method ,Modified sugar batter method Whipping method, Blending method etc. Process steps and their significance. Importance of baking time and temperature. Recipe balancing . Defects in cakes, their causes and remedies.	9	-
IV	Biscuits . Definition and types.Fermented dough biscuits. Cookies. Types of cookies and their manufacture. Cream biscuits. Process steps and their significance. Defects in biscuits their causes and remedies	9	-
V	Confectionery manufacture- raw materials and processing; cocoa, sugar, special fats, dried milk products, emulsifiers. Sugar confectionery – general technical aspects, manufacture of boiled sweets, lollipops, lozenges, gums and jellies, chewing gums, caramel, toffee, fudge. Indian Confectionery – Types, role of sugar in preparation, other ingredients and their role in preparation	9	-
	Total	45	-
L: Lectu	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outco	omes,	
PSO: Pr	ogram Specific Outcomes		
Suggeste	d Books/References		
S.N.			
1	Ashokkumar, Y. (2018). Textbook of bakery and confectionery. (Revised). PHU	earning	Pvt.

1	Ashokkumar, Y. (2018). Textbook of bakery and confectionery, (Revised). PHI Learning Pvt
	Ltd.
2	Uttam K Singh, Theory of bakery and confectionery
3	Dr. Madhvi Daniel, Bakery and confectionery science
4	Mathuravalli, S. M. D. (2021). Handbook of Bakery and Confectionery. CRC Press.

Course T	itle	FO	OD Q	UALII	Y EV	ALUA	TION	LAB							
Course c	ode	PC	FET-4	0486											
Category	7	Pro	fession	al Core	e Cours	se									
Scheme a	and		L			Т	I)		С	Sem	nester V	II		
Credits			0			0	4	1		2					
Pre-requ	isites	knowledge of food quality parameters													
(if any)		Des	sirable-	- Know	ledge	of basi	c food	compo	nents						
Course		The	e object	ive of	this co	urse is	to imp	art							
Objective	es	• Knowledge of quality parameters of food													
	Knowledge for determining quality of food in industry														
Course Outcomes															
On the successful completion of the course, students will be able to															
CO1	Eval	Evaluate qualitative and quantitative differences using various sensory Evaluating													
	tests	tests													
CO2	Evaluate the quality parameter of bakery products Evaluating														
CO3	Evaluate the quality attributes of dairy products instrumentally Evaluating														
			1	. .		J	r			J			8		
CO4	Δεε	200 0119	lity par	ameter	e of fr	ite vo	getable	e and i	te prod	note ne	ina	Evalu	atina		
0.04	vari	ous tecl	hnjaue		5 01 110	iits, ve	getable	s and i	ts prou	lucis us	ang	Lvan	ating		
	vario		innque	5											
CO-PO N	Iannii	nσ													
	appi	1 5													
1	l: Sligl	ht (Low	v) 2:	Mode	rate (N	Iedium	a) 3:	Substa	antial (I	High)	"-": Ì	No Corr	elation		
COs						PO	S						PSC	s	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	3	3	3	3	2	-	-	-	-	-	2	3	3	
CO2	2	3	3	3	3	3	-	-	-	-	-	3	3	3	
CO3	2	3	3	3	3	3	-	-	-	-	-	3	3	3	
CO4	2	3	3	3	3	3	-	-	-	-	-	3	3	3	
Average	2.0	3.0	3.0	3.0	3.0	2.8	-	-	-	-	-	2.8	3.0	3.0	

List of Pr	actical
S.N.	Practical
1	Sensitivity tests (Threshold/Dilution) to measure individual ability for sensory analysis
2	Difference tests to evaluate qualitative and quantitative differences and/or preference between
	test products.
3	Assessment of quality of wheat flour (Water Absorption Power, Gluten Content, Sedimentation
	Value etc.).
4	Evaluation of quality of Bakery Products: Bread, Biscuits, Cakes etc.
5	Evaluation of quality of Dairy Products: Over run and fat content in IceCream, Specific gravity
	of Milks etc.
6	Assessment of quality of Fruit & Vegetable Products: Tomato Products, Jam, Jelly,
	Marmalades, Squashes & Cordials, Canned Products.
7	Assessment of Quality of Beverages: Tea & Coffee, Carbonated and RTS Beverages.
L: Lectur	re, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,
PSO: Pro	gram Specific Outcomes
Reference	Books and Suggested Readings:
S.N.	Details
1	BIS Specifications - The Chemical Analysis of Foods & Food Products
2	Morris B. Jacobs- Hand Book of Analysis and Quality Control for Fruit & Vegetable Products
3	S. Rangann - Official Method of Analysis of AOAC

MINI PROJECT (Proj.FET - 40487)

L: T: P: C

0: 0: 6: 3

The student (s) will be required to search literature pertaining to design of an equipment / processing of a food commodity / production of food product, comprehend it and prepare a report for assessment.

INDUSTRIAL TRAINING (SIFET- 40488)

L: T: P: C

0: 0: 2: 1

The student(s) will be required to undertake training in the food industry after III B. Tech.VI semester for a specified period and submit its report after completion for evaluation and oral examination in the VII semester of his studies in Final B.Tech.

Course 7	Title SPECIALITY FOODS															
Course c	ode	PE	T-448	6												
Category	/	Pro	fession	al Elec	tive Co	ourse										
Scheme a	and		L			Т	I	D		С	Sem	nester V	III			
Credits			2			0	()		2						
Pre-requ	isites	Nor	ne.								1					
(if any)		Des	irable	_												
Course		The	e object	tive of	this cou	urse is	to imp	art								
Objectiv	es		• Th	e know	ledge	about t	he maj	or and	minor	constitu	lents of	foods a	and their			
			fur	nctions												
			• Th	e know	ledge a	about b	oasics o	of huma	ın nutri	tion						
Course (Course Outcomes															
On the su	On the successful completion of the course, students will be able to															
CO1	Understand the nutritional/dietary requirements during normal life Understanding															
	cycle and during metabolic disorders and disturbances															
~~~																
CO2	Understand the importance and role of Nutraceutical and functional Understanding															
	Toods in view of human health															
CO3	Understand the modifications in the diet during attack of diseases and other Understanding															
	health conditions for restoring normal health															
CO4	Und	erstand	the be	neficia	l effect	ts of sp	ecific f	food co	onstitue	nts		Unde	erstanding	5		
CO5	App	lv the r	orincip	les of n	utritio	1 in on	e's dail	v diet				Appl	ving			
000	- PP	- <b>j</b> • • • •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					.j aree				PP-,				
CO-PO N	Mappir	ıg														
~~~	1: Sligł	nt (Low	<i>i</i> ) 2:	Mode	rate (M	Iedium	) 3:	Substa	intial (I	High)	"-": Ì	No Corr	elation			
COs						PO	S						PSC)s		
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO1	PO1	PSO1	PSO2		
	1	2	3	4	5	6	7	8	9	10	1	2				
CO1	-	3	3	3	-	3	-	-	-	-	-	2	3	3		
CO2	-	-	3	2	-	3	-	-	-	-	-	2	2	2		
CO3	-	2	2	3	-	3	-	-	-	-	-	2	3	3		
CO4	-	-	3	2	-	3	-	-	-	-	-	2	2	2		
CO5	1	3	3	3	-	3	-	-	-	-	-	2	3	3		
Average	0.2	1.6	2.8	2.6	-	3	-	-	-	-	-	2	2.6	2.6		

Detailed (Contents						
Module		Contents	L Hours)	T (Hours)			
Ι	Infant and baby foods, Adolese pregnant ladies and nursing Foods / Diets in metabolic dise	cent / Teen-age foods, Geriatric foods, Foods for mothers. Nutraceutical and functional foods. orders and disturbances.	10	-			
II	Foods and Diets recommender Fever and Infection; Liver, ga	ed and restricted in Gastrointestinal disorders; Ilbladder and pancreatic disturbances.	7	-			
III	Foods and Diets recommended diseases; urinary and Musculo	7	-				
IV	Beneficial Effects of Spices, ga other food constituents. New I	6	-				
	Total	30	-				
L: Lectur PSO: Pro	re, T: Tutorial, P: Practical, C: Ca ogram Specific Outcomes	redits, CO: Course Outcomes, PO: Program Outco	omes,				
Suggested	l Books:						
S.N.	AUTHOR	TITLE					
1	Benzamin T. Burton	Human Nutrition					
2	B. Srilakshmi	Dietetics					
3	Arnold E. Bender	Nutrition and Dietetic foods					
4	Shubhangini A. Joshi	Nutrition and Dietetics					
5	Periodicals by AFST(I), CFTRI	Indian Food Industry					
6	P. S. Howe, W.B. Saunders	Basic Nutrition in Health & Disease					

Course Title	FOOD PROCESS EQUIPMENT DESIGN									
Course code	PEFET-									
Category	Professional Elective Course									
Scheme and	L	Т	Р	С	Semester VIII					
Credits	2	0	0	2						

Detailed C	Detailed Contents									
Module	Contents	L (Hours)	T (Hours)							
I	Application of design engineering for food processing equipments, Design parameters, codes and materials selection.	6	-							
II	Design of handling and milling equipments, dryers, heat exchangers, Pressure vessels, Optimization of design with respect of process efficiency.	6	-							
III	Design of evaporator, vapor separator and condenser.	6	-							
IV	Design of Basket Press, Screw type Juice Extractor, Solid Mixer, Kneader; Oil Expeller, filters and extruder.	6	-							
V	Design of Homogenizer, Pulping Machine, Plate Type Freezer and Freeze Drier.	6								
	Total	30	-							

L: Lecture, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,

PSO: Program Specific Outcomes

Suggested Books/References:

S.N.	
1	Chemical Engineer's Handbook; Perry, Chilton & Green; MGH.
2	Fundamentals of Food Process Engineering, 2 nd ed; Toledo Romeo T; CBS Publishers.
3	Preservation of Fruits & Vegetables; Lal G, Sidhapa GS & Tandon GL; ICAR.
4	Introduction to Chemical Equipment Design – Mechanical Aspects; Bhattacharyya BC; CBS Publishers.
5	Process Equipment Design; Hesse HC & Rushton JH; Van Nostrand, East West Press
6	Selection of Material and Fabrication for Chemical Process Equipment; Bhattacharyya BC; Chemical
	engineering Education Development Centre, IIT Madras.
7	Process Equipment Design; Brownell LE & Young EH; John Wiley and Sons, Inc.
8	Computer Aided Design of Chemical Process Equipment; Bhattacharyya BC & Narayanan CM; New
	Central Book Agency.
9	Mechanical Design and Fabrication of Process Equipment; Bhattacharyya BC; Khanna Publishers

Course Title	FOOD PROCESSING WASTE MANAGEMENT									
Course code	PEFET-	PEFET-								
Category	Professional Elective Course									
Scheme and	L	Т	Р	С	Semester VIII					
Credits	2	0	0	2						

Detailed C	ontents					
Module		Contents	L	Т		
			(Hours)	(Hours)		
I	Basic considerations: Standards pollutants from food processin Environment (Protection) Act, management of food processing	s for emission or discharge of environmental og Industries as per the updated provision of 1986. Elements of importance in the efficient wastes	6	_		
Π	Characterization and utilization Fruits and vegetables, Plantation Egg and poultry processing indu	of by-products from Cereal Pulses, Oilseeds, n products, Fermented foods, Milk, Fish, Meat, stries.	6	-		
ш	Characterization of food Indust Oxygen demands and their inte grease, Forms of Nitrogen, S Surfactants, Colour, Odour, Tas industry effluent, Screening, S reactants.	rry effluents, Physical an chemical parameters, rrelationships, Residues (solids), Fats, Oils and ulphur and Phosphorus, Anions and cations, ate, Toxicity. Unit concept of treatment of food edimentation Floatation as pre - and primary	6	-		
IV	V Biological oxidations: Objects, Organisms, Reactions, Oxygen requirements, Aeration devices Systems: Lagoons, Activated sludge process, Oxidation ditches, Rotating biological cont caters and their Variations and advanced modifications.					
V	Advanced wastewater treatment Filters, Ultra filtration and re activated carbon adsorption, separation. Chemical oxidation Disinfection. Handling disposal	systems. Physical separations, Micro-strainers, everse osmosis. Physico-chemical separations: Ion-exchange electro-dialysis and magnetic s and treatment Coagulation and flocculation. of sludge.	6			
	Total		30	-		
L: Lectur	e, T: Tutorial, P: Practical, C: Cred	lits, CO: Course Outcomes, PO: Program Outcom	es,			
PSO: Pro	gram Specific Outcomes					
Suggested	Books/References:					
S.N.	AUTHOR	TITLE				
1	LH. Green	Food Processing Waste Management				

Course Title	NOVEL FOOD PROCESSING TECHNOLOGIES											
Course code	PEFET-	PEFET-										
Category	Professional Election	Professional Elective Course										
Scheme and	L	Т	Р	С	Semester VIII							
Credits	2	0	0	2								

Detailed C	ontents		
Module	Contents	L (Hours)	T (Hours)
I	High Pressure Processing: Principles of high pressure processing, Effects of high pressure on food quality: Pressure effects on microorganisms, texture and nutrients of food. Hurdle Technology Concept; effect on preservation of food	6	-
II	Pulsed electric fields processing: PEF treatment systems, main processing parameters. Mechanisms of action: mechanisms of microbial inactivation.	6	-
III	Osmotic dehydration: mechanism of osmotic dehydration, application of osmotic dehydration. Membrane separation: Principle, different types of Membrane processing, Application in Food industry	6	-
IV	Ultrasound processing: fundamentals of ultrasound, ultrasound as a food preservation and processing aid, effects of ultrasound on food properties.	6	-
V	Alternate thermal processing: Microwave heating, Radio-frequency processing: dielectric heating, radio-frequency heating; Ohmic heating, Freeze drying, freeze concentration, UV radiation	6	
	Total	30	-

L: Lecture, T: Tutorial, P: Practical, C: Credits, CO: Course Outcomes, PO: Program Outcomes,

PSO: Program Specific Outcomes

Suggested Books/References:

S.N.	
1	P J Fellows (2009). Food Processing Technology: Principles and Practice. Third edition. Wood Head
	Publishing in Food Science, Technology and Nutrition.
2	Howard Q. Zhang,, Gustavo V. Barbosa-Cánovas, V. M. Bala Balasubramaniam, C. Patrick Dunne,
	Daniel F. Farkas, James T. C. Yuan (2011). Nonthermal Processing Technologies for Food. Wiley-
	Blackwell.
3	Ortega-Rivas, Enrique (2012). Non-thermal Food Engineering Operations. Springer.
4	N S Isaacs (1998). High pressure food science, bioscience and chemistry. Wood Head Publishing
	limted.
5	H L M Lelieveld, S Notermans, and S W H De Haan (2007). Food preservation by pulsed electric
	fields: From research to application. Wood Head Publishing limted.

Course T	itle	ME	MEAT , FISH & POULTRY PRODUCTS TECHNOLOGY											
Course c	ode	PCI	FET-44	87										
Category	7	Pro	fession	al Core	e Cours	se								
Scheme a	and		L			Т	F)		С	Sem	ester	VIII	
Credits			3			0	0)		3				
Pre-requ	isites	Nor	ne.											
(if any)		Des	irable -	– Knov	vledge	of food	l proce	ssing a	and pres	servati	on			
Course		The	object	ive of	this cou	arse is	to impa	art						
Objective	es	•	know	ledge	about r	neat, p	oultry a	and fisl	n					
		•	know	ledge	about p	process	ing of t	fish and	d poult	ry				
		•	know	ledge	about t	hermal	proces	ssing a	nd hurc	lle tech	nologie	es		
Course C	Outcon	ies	es											
On succes	ssful co	l completion of the course, the students will be able to												
CO1	Unde	rstand	Ind the basic concept about edible muscle Understanding											ng
CO2	Under	erstand various chemical, nutritional and microbiological properties Understanding												
	of me	ieat												
CO3	Unde	rstand	process	ing of	meat a	nd its r	preserv	ation				Und	erstandi	ng
				0		1								0
~~ (•										
CO4	Unde	rstand	inspect	ion and	l gradi	ng of m	neat and	d poult	ry			Und	erstandi	ng
CO5	Unde	rstand	fish pro	oducts,	therma	al proce	essing a	and hur	dle tec	hnolog	gies	Und	erstandi	ng
CO-PO N	Aappi r	ıg												
1:	Slight	(Low)	2: N	/Iodera	te (Me	dium)	3: S	ubstant	tial (Hi	gh)	"-": No	o Corr	elation	
COs						PO	S						PS	Os
	РО	PO	PO	РО	РО	РО	PO	РО	PO	РО	PO1	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	1	12	1	2
CO1	1	1	1	1	-	3	-	-	-	-	-	-	1	1
CO2	1	1	2	1	-	3	-	-	-	-	-	-	1	2
CO3	1	1	1	2	-	3	-	-	-	-	-	-	2	1
CO4	2	2	2	1	-	3	-	-	-	-	-	-	1	2
CO5	1	1	1	2	-	3	-	-	-	-	-	-	1	1
Average	1.2	1.2	1.4	2	-	3	-	-	-	-	-		1.2	1.4

Detailed	Contents			
Module		Contents	L (Hours)	T (Hours)
I	Introduction to meat and poultry i Abattoir Practices: slaughtering te cuts and portions of meat; Ins composition of muscle; Post-mo meat.	ndustries; Pre-mortem selection of animals; Modern schniques of animal and slaughtering practices; Meat spection and grading of meat; Physico-chemical rtem changes in muscle; Conversion of muscle to	9	-
II	Chemical and nutritional composit holding capacity (WHC) and juic microbiology and safety; Spoilag infections; Preventive (prophylaxi	tion of meat; The eating quality of meat - color, water iness, texture and tenderness, odour and taste; Meat e characteristics of meat; Endogenous & exogenous is) measures for avoiding meat spoilage.	9	-
III	Meat processing- comminution, e tenderization; Meat products - me and comminuted meat products; temperature control (refrigeration (dehydration, freeze drying, curi preservation, ionizing radiation) processing and consumption tren products from meat industries and	mulsification, curing, smoking, cooking, ageing and at emulsion, fermented meats, sausages, ham, bacon Meat analogs; Meat storage and preservation- by , freezing, thermal processing), by moisture control ng, IMF meat), by microbial inhibition (chemical ; Packaging of meat products. Meat production, nds; Meat plant sanitation and waste disposal; By- l their utilization.	9	-
IV	Inspection of birds, poultry slaugh Classification of poultry meat; C Processing of poultry meat, spoila Egg and egg products- Structure, in eggs; Functions of eggs in food Preservation and safe handling of and egg based products	ter and dressing, Factors affecting quality of poultry; Composition and nutritional value of poultry meat; age and control; By-product utilization. composition and functions of eggs; Abnormalities d products; Inspection and grading for egg quality; eggs; Coagulation of eggs, egg foams, egg powder	9	-
V	Fish as raw material for processin the quality of product and post ha aquatic products. Physical, chem storage. Principles of thermal pro- "Z" and "F" values, 12D concept, fish. Value added fish products. I and role of muscle proteins, Fa Fisheries By-products Technology	g and its biochemical composition. Factors affecting revest losses. Chilling and freezing of fish and other nical, microbiological and sensory changes during cessing. decimal reduction time, thermal death time, determination of process time. Canning process for Hurdle technology and its application. Composition ctors influencing denaturation of muscle proteins.	9	-
	Total		45	-
L: Lectu PSO: Pro	re, T: Tutorial, P: Practical, C: Cred ogram Specific Outcomes	its, CO: Course Outcomes, PO: Program Outcomes,		
Suggestee	Books:			
S.N.	AUTHOR	TITLE		
1	H.V.Athortone	Chemistry and testing of dairy products		
2	N.Warner	Principles of dairy processing		
3	R.A.Lawrie	Meat Science.		
4	G.J.Mountney	Poultry Products Technology		
5	B.Srilakshmi	Food Science		

Course 7	Title	FOOD PLANT LAYOUT AND DESIGN													
Course c	ode	PC	FET-4	488											
Category	7	Pro	fession	al Core	e Cours	se									
Scheme a	and		L			Т	I	D		С	Sem	ester V	III		
Credits			2			1	()		3					
Pre-requ	isites	Basic	cs of in	strume	ntation	and f	ood pro	ocesses							
(if any)															
Course		Upor	n comp	leting t	the cou	rse, the	e studer	nt will	be able						
Objectiv	es		• To	develo	op the s	kills fo	or equip	oment o	design	and pla	int layo	ut for d	ifferent fo	bod	
			processing plants												
			 Gain knowledge of building materials for use in the food industry To up dependent of the state o												
		• To understand worker safety and health aspects in the food industry													
Course (Dutcon														
On succe	ssful co	ompleti	ion of t	his cou	ırse stu	dents v	vill be	able to							
		1													
CO1	Reca	all basi	Il basic concepts of plant layout and design with special reference Remembering												
	to fo	pod process industries.													
CO2	Unde	derstand the selection of process equipment and considerations Understanding													
002	involv	alved in equipment selection & economic analysis of equipment													
	A	41.	- 1					.1				A	·•		
03	Anal	yze the	e prepa	ration a	and dev	ic sym	ent of pholes for	plant la	yout an	id equi	pment	Anar	yzıng		
	Symo		cuic s	ymoors	, graph	ic sym	0015 10	i pipin	g syste	1115					
CO4	Desi	gn the	plant l	ayout f	or diffe	erent fo	ood pro	cessing	g units			Appl	ying		
CO5	Anal	yze the	e safety	standa	urds du	ring bu	ilding	a food	process	s plant		Anal	yzing		
		-	-			-	-		-	-					
CO-PO N	Mappir	ıg													
					~			~ .	• • /~						
COa	I: Slig	ht (Lov	v) 2:	Mode	rate (M	ledium) 3:	Substa	ntial (F	ligh)	"-": N	lo Corr	elation)~	
COS			1	1	1	PU	8	1	1				PSC	08	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO1	PSO2	
	1	2	3	4	5	6	7	8	9	10	1	2			
CO1	3	2	2	1	2	2	2	-	-	-	2	-	2	1	
CO2	2	2	1	1	2	1	1	-	-	-	3	-	2	1	
CO3	3	2	2	2	3	2	2	-	-	-	2	2	3	2	
CO4	3	2	3	2	3	2	-	-	-	-	3	2	3	2	
CO5	2	2	2	1	2	3	2	-	-	-	3	1	2	2	
Average	2.6	2.0	2	1.4	2.4	2.0	1.2	-	-	-	2.6	1	2.4	1.6	

Detailed	Contents			
Module	Cont	ents	L (Hours)	T (Hours)
I	Basic concepts of plant layout and de process industries. Basic understanding of food process plants. Selection of site and	esign with special reference to food of equipment layout and ventilation in a Location of plant.	6	3
Π	Feasibility Study: Design of product, process selection considering technical, planning and scheduling, flow sheeting, fland computer aided development of equipments, material handling equipment controls, considerations involved in equipment.	roduct specifications, process design, economic and social aspects. Process flow diagrams and process flow charts flow charts; Selection of Process at, service equipment, instruments and pment selection, economic analysis of	6	3
III	Types of layouts, preparation and develo flow sheet symbols, electric symbols, standards for space requirement and dim	6	3	
IV	Plant layout and design of bakery and design of fruits and vegetables processing layout and design of milk and milk prod	biscuit industries. Plant layout and g industries including beverages. Plant ucts.	6	3
V	Miscellaneous aspects of plant layout a steam, refrigeration, water, electricity, drainage, CIP system, dust removal, fir Health Aspects, Building and Building N	and design like Requirements of the waste disposal, lighting, ventilation, e protection etc. Workers Safety and Materials.	6	3
	Total		30	15
L: Lectur PSO: Pro	re, T: Tutorial, P: Practical, C: Credits, CO ogram Specific Outcomes	Course Outcomes, PO: Program Outco	omes,	
Suggested	Books			
S.N.	AUTHOR	TITLE		
1	Mr. M. K Sharma and Dr. B.K Kumbhar	Food Processing Plant Design & Layo	out	

Course 7	itle	FO	OD PA	CKA	GING									
Course c	ode	PC	FET-4	489										
Category	7	Pro	fession	al Core	e Cours	se								
Scheme a	and		L			Т	F	2		С	Sem	nester V	III	
Credits			3			0	()		3				
Pre-requ	isites	Des	sirable-	- Know	ledge	of basic	c food	compos	sition a	nd pol	ymers,	metals,	glasses e	tc.
(if any)														
Course		The	e object	ive of	this cou	arse is	to impa	art						
Objectiv	es	•	Knov	wledge	of pacl	kaging,	packa	ge deve	elopme	nts and	l packag	ging law	's and reg	ulations
			in fo	od indu	stries			_						
		•	Knov	wledge	of diff	erent fo	orms of	f packa	ging m	aterial	s used i	n food j	packagin	g
		 Knowledge about package performance and various testing of packaging materials Knowledge about advancements in feed packaging techniques 												iterials
0 0		Knowledge about advancements in food packaging techniques												
Course Outcomes														
	Lind	arctond	pietion	of the	course.	, studer	ns will	be abi	e lo	the yer	ious	Undo	ratandina	
COI	equi	erstand	i involv	Jecuve Jecuve	s and r	uncuor chagin	as of pa	ackagn	ig and	the var	ious	Unde	rstanding	2
	equi	pineins	nents involved in food packaging											
CO2	Disc	uss the manufacturing and characteristics of various packaging Understanding												
001	mat	materials viz paper, glass, metal, and plastic												
		nuclius (12 puper, Bluss, inclui, und plustic												
CO3	Und	erstand	l the fo	od prod	luct ch	aracter	istics a	nd app	ly the l	knowle	dge in	Appl	ying	
	pack	aging	various	food c	commo	dities			•		C			
	_													
CO4	Exp	lain the	e criteri	a for se	electior	n of ma	terials,	forms	, machi	inery a	nd	Unde	rstanding	5
	meth	nods fo	r vario	us food	l produ	ces								
~~~									1.0					
CO5	Und	erstand	l the pr	inciple	and ap	plicati	ons of a	advanc	ed food	d packa	aging	Appl	ying	
	tech	niques	and ap	plicatio	on of pa	ackagir	ng laws	s and re	gulatic	ons				
	Ionnis	10												
		ig abt(Lo	w) 7	)·Mode	rate(M	edium	3.0	Substar	ntial(Hi	iah)	"_"· N	Correl	ation	
	1.51	gni(L0	<b>vv</b> ) 2	2.1010uc			)	Juostai	itiai(11	igii)	10			
COs						PO	S						PSC	)s
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	<b>PO1</b>	PSO1	PSO2
	1	2	3	4	5	6	7	8	9	10	1	2		
CO1	3	2	1	2	3	1	-	1	-	-	2	-	2	1
CO2	2	2	1	1	2	3	1	3	-	-	3	-	2	1
CO3	3	2	2	1	3	2	1	3	-	-	3	-	2	3
CO4	2	1	3	3	2	3	1	1	-	-	3	-	2	1
CO5	3	3	3	2	3	3	1	2	_	-	2	-	3	2
Average	2.6	2	2	1.8	2.6	2.4	0.8	2	-	-	2.6	-	2.2	1.6



3

Trends in Food Science & Technology

Detailed	Contents			
Module	Cont	ents	L	Т
			(Hours)	(Hours)
Ι	Basic Concepts: Concept of packaging, I development factors and Food pack Packaging: Form fill and seal machines wrap packaging machine and multilayer	Functions of a Food Package, Package kage development. Machinery for , vacuum packaging machine, shrink packaging system.	9	-
II	Plastics in Food Packaging: Manufacture used in packaging, rigid plastic contain packaging materials. Their mechanical s	of plastic packaging, types of plastics ers, coating of plastic films, flexible ealing and barrier properties.	9	-
III	Glass containers: Composition, Propert glass containers. Metal containers: Bulk free steel containers, Aluminium contain lacquers for processed food cans. Paper a	ies, Bottle making and Closures for containers; Tin-plate containers, Tin ers. Can making processes. Protective and paperboard packaging.	9	-
IV	Food product characteristics and packag Forms, Machinery and methods for free Meat and Fish), Edible oils and Fats, products (Fruit & Vegetable, Cereal & P Meat & Marine products).	e requirement, Selection of materials, sh produce (Fruits, Vegetables, Egg, Spice and spice products, Processed Julse, Dairy, Confectionery & Snacks,	9	-
V	Package printing, Aseptic Packaging, Evaluation of food packaging materials product quality and shelf life. Packaging	Novel food packaging technologies. and package performance. Packaged and Labeling Laws and Regulations.	9	-
	Total		45	-
L: Lectu PSO: Pro	re, T: Tutorial, P: Practical, C: Credits, CO: ogram Specific Outcomes	Course Outcomes, PO: Program Outco	omes,	
Suggestee	d Books			
S.N.	AUTHOR	TITLE		
1	M. Mahadeviah and R.V. Gowramma	Food Packaging Materials		
2	S. Saclarow and R.C. Griffin	Principles of Food Packaging		

Proceedings of IFCON-1988



Course T	itle	INDI	JSTRI	AL SA	FETY	AND	HAZA	RD M		EME	NT				
Course c	ode	ESCH	I-4490							-					
Category	7	Engin	neering	Scienc	e										
Scheme a	and	0	L			Т	F	)		С	Sem	ester V	III		
Credits			2			0	0	)		2					
Pre-requ	isites	Nor	ne.												
(if any)		Kno	owledg	e of in	dustrial	l Hygie	ene, Ind	lustrial	Safety	,Haza	rd etc				
Course		The o	bjectiv	e of th	is cour	se is to	impart	-							
Objective	es	•	• knowledge of reliable and safe operation in industry												
		•	• knowledge of the set of rules and procedures in the industry												
		•	• knowledge to recognize and evaluate occupational safety and health hazards in the												
			workplace												
Course C	Outcon	nes													
On the su	agaaaf	1	nlation	oftha	0011800	atudar	ata 111	bo obl	a ta						
On the su	ICCESSI	ui comj	pietion	of the	course	, studel	its will	be abi	e 10						
CO1	Unc	lerstan	d the m	nethods	of haz	ard Ide	entifica	tion an	d prev	entive		Unde	rstanding	ŗ	
001	mea	sures t	o conti	ol it, e	xplain	industr	ial law	s, regu	lation a	and sou	irce	01100		, ,	
	moo	dels	lels												
CO2	App	oly the	metho	ds of p	revention	on of fi	re & e	xplosio	n			Appl	ying		
CO3	Pre	pare the	e proce	dure o	f avoid	ance of	f losses					Appl	ying		
CO4	Unc	lerstan	d the p	rocess	of hand	illing, ti	ranspoi	tation	and sto	orage of	f	Unde	erstanding	g	
	haz	ardous	indust	rial ma	terials										
CO-PO M	Aappir	ıg													
	1 01	1.47	\ <b>`</b>			1. \	2.0	1 1	· 1/II.	1 \	( <b>( )</b> ) <b>N</b> T	0 1	<i>.</i> .		
COs	1:511§	gnt(Lov	N) 2		rate(M	ealum)	) 3:2 s	substan	illai(HI	gn)	- : INC	Correi	ation PSC	)s	
005	DO	DO	DO	DO	DO			DO	DO	DO	<b>DO1</b>	<b>DO1</b>		DCOO	
	PO 1	PO 2	PO 2		PO 5	P0 6	PO 7	PO e		10 PO	1 POI	PO1	PS01	PSO2	
CO1	1	2	3	1	3	U	/	0	,	10	1	4	2	2	
	1	2	2	1	2	-	-	-	-	-	-	-	2	2	
C02	1	1	1	1	1	-	-	-	-	-	-	-	1	1	
CO3	1	1	1	1	1	-	-	-	-	-	-	-	2	1	
CO4	1	1	1	1	1	-	-	-	-	-	-	-	1	1	
Average	1	1.3	1.3	1	1.3	-	-	-	-	-	-	-	1.5	1.3	



Detailed	Contents			
Module		Contents	L	Т
			(Hours)	(Hours)
Ι	Industrial safety, Industrial hyg pressure, temperature, vibration cloud and mist explosion.	giene and safety aspects related to toxicity, noise, ns, radiation etc. Explosions including dust, vapor,	6	-
п	Elements of safety, safety a development and design stages risk analysis and assessment me of risk assessment, controlling	aspects related to site, plant layout, process , identification of hazards and its estimation, risk, ethods; fault free method, event free method, scope toxic chemicals and flammable materials.	6	-
III	Toxic substances and degree of human system, their doses and exposure, use of respirators, ve	6	-	
IV	Prevention of losses, pressure hazardous materials from tanks types and location of relief's.	6	-	
V	Handling, transportation and materials and wastes, regul management routines, emer management.	storage of flammable liquids, gases, and toxic ation and legislation, government role, risk gency preparedness, disaster planning and	6	-
	Total		30	-
L: Lectu	re, T: Tutorial, P: Practical, C: C	redits, CO: Course Outcomes, PO: Program Outco	mes.	1
PSO: Pro	ogram Specific Outcomes			
Suggeste	d Books			
S.N.	AUTHOR	TITLE		
1	Ray Asfahl. C	Industrial safety and Health Management		
2	Krishnan N.V	Safety Management in Industry		
3	Mamta Vyas	Safety and hazard management		



### PROJECT Proj.FET-40491

L: T: P: C 0: 0: 12: 6

The student (s) will be required to prepare a detailed project report on fabrication of an equipment / establishment of a plant for processing of a food commodity for production of food product (s) with complete lay-out and economic analysis for assessment.

A PROJECT REPORT ON "TITLE"

Submitted for partial fulfillment of award of the degree

**BACHELOR OF TECHNOLOGY** 

In Food Engineering & Technology

To Department of Food Technology Institute of Engineering and Technology

> By <STUDENT 1> <STUDENT 2> <STUDENT 3> <STUDENT 4>

Under The Supervision of

## <Name of the GUIDE>



Department of Food Technology Institute of Engineering and Technology, Bundelkhand University, Jhansi. -284128 (U.P.), India

## **Candidate's Declaration**

I/we hereby declare that the work embodied in this dissertation entitled <"TITLE">, for the partial fulfillment of award of Degree of 'Bachelor of Technology' in 'Food Engineering & Technology' submitted in the Department of Food Technology, Institute of Engineering & Technology, Bundelkhand University, Jhansi, is an authentic work, under the guidance of **<name of the GUIDE>**, <Designation>. Department of Food Technology, Institute of Engineering & Engineering & Technology, Bundelkhand University, Jhansi.

I/we have not submitted the work embodied here elsewhere for the award of any other degree.

<STUDENT 1 (Roll no.)> <STUDENT 2 (Roll no.)> <STUDENT 3 (Roll no.)> <STUDENT 4 (Roll No.)>

Date-

Place-

## Certificate

This is to certify that the work embodied in the project report entitled <"TITLE"> has been carried out by <name of the students> with roll no.....for the partial fulfillment of award of the degree of 'Bachelor of Technology' in 'Food Engineering & Technology' under my supervision. The work has been carried out by them at the Department of Food Technology, Institute of Engineering and Technology, Bundelkhand University, Jhansi (UP) is genuine and original.

Date:

#### NAME OF THE GUIDE

Department of Food Technology IET, B.U. Jhansi-284128

# Acknowledgement

Students have to write the acknowledgement themselves and should not copy amongst each other. Try to thank all who are directly or indirectly connected/Involved to your project.

# SEMINAR REPORT ON "TITLE"

Submitted for partial fulfillment of award of the degree

## BACHELOR OF TECHNOLOGY

In Food Engineering & Technology

To Department of Food Technology Institute of Engineering and Technology

> By <STUDENT NAME> <Roll. No.>



Department of Food Technology Institute of Engineering and Technology, Bundelkhand University, Jhansi. -284128 (U.P.), India