

टेलीफोन : कार्या० : 2320496 कुलसचिव : निवास : 2321214 फेक्स : 0510 : 2321667

बुन्देलखण्ड विश्वविद्यालय, झाँसी BUNDELKHAND UNIVERSITY, JHANSI

1013 /12d. 2022

झाँसी (उ.प्र.) 284128

The Minutes of Meeting of BOS

In reference to the BOS of department of *Mathematical Sciences*. A. Computer Mphicality Sinstitute of *Mathematical Sciences*. R. Computer Mphicality Sinstitute of *Mathematical Sciences*. R. Computer Mphicality Mphicality Sinstitute of 28-06-2022 regarding the revision of syllabus in tune with CBCS/NEP-2020 and subsequent approval from Academic Council. This is to certify that the syllabus is 100% revised.

Bundelkhand University JHANSI

Deptt. of Mathematical Sciences & Computer Applications BARCHICE MANDUNIVERSITY, JHANSI

Department of Mathematical Sciences and Computer Applications

Minutes of BOS Meeting

Today on 28th May 2022 from J2:15 PM onwards, a meeting of BOS (Board of Studies) for the session 2022-2023 as per New Education Policy (NEP-2020) for the courses BCA, B.Sc.(Mathematics/Statistics/Computer Science), M.Sc.(Statistics), MCA (As per AKTU), B.Sc. (CS & IT). M:Sc. (CS & IT) held in the department of Mathematical Science & Computer Applications, Bundelkhand University, Jhansi, UP. The following members present in the meeting:

- 1. Prof. R.K. Saini, BU Jhansi-
- 2. Prof. Ravindra Patel RGPV, Bhopal-
- 3. Prof. Vijay Gupta, RGPV, Bhopal-
- 4. Prof. Avnish Kumar, BU Jhansi-
- 5. Dr. Alok Verma, BU Jhansi-
- 6. Dr. Saurabh Srivastava BU Jhansi-
- 7. Dr. Dharmendra Badal, BU Jhansi-
- 8. Dr. Dharmendra Kanchan, BU Jhansi-
- 9. Dr. D. Das Prajapati, BU Jhansi-
- 10.Dr. Anil Kevat, BU Jhansi-

Gunel

- 11.Dr. Sachin Upadhyay, BU Jhansi-
- 12.Mr. Kamal Gupta, BU Jhansi-
- 13.Dr. Punit Matapurkar, BU Jhansi-

14.All Teaching Assistants, BU Jhansi-

HOD, Convener of BOS External Expert External Expert (Member Member Member Member 4 Member Member Member Member Member Memberly Member

(Prof. R. K.

Head

After a through discussion, the following decisions are adopted:-

- New Education Policy-2020 is adopted for the courses BCA, B.Sc.(Mathematics/Statistics/Computer Science). M.Sc.(Statistics). MCA(As per AKTU), B.Sc. (CS & IT), and M.Sc. (CS & IT), which will be effective session 2022-2023.
- Panel of examiners for all courses running through the department are signed by members.
- The syllabus of all the courses as BCA, B.Sc. (Mathematics/Statistics/Computer Science), M.Sc. (Statistics), MCA(As per AKTU), B.Sc. (CS & IT), and M.Sc. (CS & IT), takes a modification upto 20% form previous one, suggested by students and industry persons.
- According NEP-2020, some value added courses, entrepreneurships programme and employability skill programme and courses are adopted.
- 5 Discussion for starting the course M.Sc.(Statistics with soft computing) in place of M.Sc.(Statistics) in the department from next academic session.

MSc in Data Science, cull be the new courd

He dept from second 2022-23.

M.A. /M. Sc. (MATHEMATICS)

In continuation of UG IVth year

Bundelkhand University, Jhansi

(New Education Policy-2020) w.e.f. 2022-23 and onwards

ORDINANCE FOR POSTGRADUATE (SEMESTER SYSTEM) PROGRAMME

ARTS, SCIENCE & COMMERCE FACULITIES (2022 onward)

Program Overview M.Sc. (Mathematics)

PROGRAM OVERVIEW-

Designed to strengthen student's mathematical background by in depth knowledge of mathematical concepts. The learner has to do a unique three term thesis keeping in mind the research centricity. The answer to the question of what is an MSc in Mathematics lies in understanding how different types of math are categorized. Instead of focusing on a particular type of math such as algebra or calculus, a postgraduate degree in general mathematics allows students to concentrate on number theory and advanced mathematical methods that tie together all the different forms of mathematics they have likely already learned. This degree tends to have a heavy focus on analysis and theory rather than practical uses of math, but most schools also require several application courses for completion. An MSc in Mathematics gives students who want to work in science, engineering, or computing a solid core education. Most degree programs also require a research component, so students can get a feel for how to use their new skills in the real world.

The cost of a Masters in Mathematics depends on what institution you choose to study at. Most degree programs take one to two years to complete, so the cost of tuition should be assessed accordingly. Many careers in science, engineering, technology, and computers are accessible with a Master of Mathematics. In addition, a postgraduate degree in math makes job seekers more attractive to hiring managers in the fields of business and finance who look for the kind of problem solving and analytical skills that are taught in advanced math courses.

After completing MSc in math your career will be more stable and successful. The private plus government sectors both have thousands of job options available for you. The government sector also wants a good mathematician person. Who can manage the data and business model. Every business requires financial activity and data management for better improvement and success. Various companies have a position like numerical operation and accountant. So, career after **MSc maths** is very fruitful for you.

- 1. Lecturer in Mathematics: One of the rewarded and famous profiles this is. Becoming a lecturer is not easy but if you are fully preparing for that then it can be not tough for you.
- 2. Scientific Officer: If you are very good at maths and calculation. Then MSc maths can give you the opportunity to work with the top government sector. In another word, you can apply for a scientific office job in the industry. Such as ISRO (the Indian Space research Organization). DRDO (Defense Research and Development Organization). NAL (National Aeronautics Limited).
- 3. **Computer & IT:**MSc math also relates to computer science. A career after MSc maths gives you a vast pathway for the computing field. ICT (information and communication technology) is playing a big role in this platform. ICT always offer a new role for math degree students.
- 4. **General Management**: Every industry does have this position. Because general management is basically responsible for business organizing and employee handling.
- 5. **Manual Testing**: In this profession, you have to do manual testing for the company. This means you have to find the defect and error.
- 6. **Data Science Modelers:** We all know about the data science modelers. The demand for data science specialists is huge because every company wants to convert its data into the required information.
- 7. **Banking Investment Banking**: Many famous investment banks provide financial advice to the customer. These professions help you increase the equity and debt market.
- 8. **Statistical Research**: A career in statistical research is very interesting. It presents the company's statistical businesses at a modest and technical level.

- 9. **Operational Research**: You can also become operational research if you are good at mathematics. Under this profession basically, you have to solve the business profitability, improve efficiency, and complex organization problems.
- 10. **Junior Research Fellow**: Junior research fellow exam is now conducted by the CBSC. Normally only top candidates only get the JRF post.

Programme Outcomes (POs)

Program outcomes are narrower statements that describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviours that students acquire in their matriculation through the program.

PO-01	Scientific exploration	Capability of comprehending basic scientific principles, mathematical aptitude and theories to propose solutions.
PO-02	Conduct investigations of complex problems	Use explorative aptitude and research methods for analysis and interpretation of data and synthesis of information to provide effective conclusions.
PO-03	Ethics	Apply ethical principles and commit to professional ethics and responsibilities for societal benefits
PO-04	Communication	Communicate effectively scientific findings, and to be able to assimilate, write and present effective reports to give and receive clear instruction.
PO-05	Societal Impact	Acquire and apply advanced knowledge of concepts and participate in sustainable development.
PO-06	Individual and team work	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO07	Life-long learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest

		context of upcoming
		scientific change.
PO-08	Professional Enhancement	In addition to core curricula,
		program offers subjects like
		communication, Technical and
		soft skills to enhance
		personality and employability.
PO-09	Innovative Pedagogy	Use of innovative pedagogical
		tools such as demo kits in
		addition to animations,
		simulations to impart effective
		teaching and learning process.
PO-10	Dissertation	Dissertation courses are
		incorporated in the curriculum
		to provide research and hands
		on experience to students in
		problem identification,
		laboratory work, data analysis
		and interpretation.
PO-11	Research Problem Solving	Ability to assimilate,
		evaluate and present
		research results objectively.

Programme Specific Outcomes (PSOs)

PSOs are statements that describe what the graduates of a specific engineering program should be able to do:

- 1. **PSO1**: Understand advanced level of differential equations, Complex analysis, real analysis, Functional analysis, and abstract algebra.
- 2. **PSO2**: Build effective conclusions through review and research gap Identifications.
- 3. **PSO3**: Demonstrate competence in using mathematical concepts and computational techniques for simulation and modelling.
- 4. **PSO4**: Exhibit the ability of comprehending the problem and building research-oriented solutions.
- 5. **PSO5:** Communicate concepts of Mathematics and its applications.
- 6. **PSO6:** Acquire analytical and logical thinking through various mathematical tools and techniques.
- 7. **PSO7:** Investigate real life problems and learn to solve them through formulating mathematical models.
- 8. **PSO8** Attain in-depth knowledge to pursue higher studies and ability to conduct research. Work as mathematical professional.
- 9. **PSO9:** Achieve targets of successfully clearing various examinations/interviews for placements in teaching, banks, industries and various other organizations/services.

1. INTRODUCTION

1.1 Preamble

This ordinance governs all the rules and regulations as per the NEP 2020 for the traditional post graduate programs (M.A. / M.Sc.(Mathematics) which are not covered by any regulatory bodies (AICTE, BAR Council, PCI, NCTE etc) running in the (Department of Mathematical Sciences & Computer Applications), University campus or its affiliated colleges in Bundelkhand University, Jhansi.

This ordinance supersedes all the previous relevant ordinances, rules and regulations.

1.2 Duration

Bundelkhand University has adopted the semester system in various Postgraduate courses as per directives of Higher Education Department, Uttar Pradesh Government vide letter No 401/seventy-3-2022 dated 09-02-2022 to accelerate the teaching-learning process and enable vertical and horizontal mobility in learning from the academic session 2022- 23 onwards.

The duration of PG courses shall be two years comprising of four semesters. In case a student(s) exits from this programme after completion of the first year (2 semesters),he /she may take exit from the programme and shall be awarded the Degree of Bachelor in Research. After the successful completion of two years (4 semesters) a student shall be awarded the Master's degree in the concerned subject. The maximum duration to complete the course shall be four years.

1.3 Eligibility for Admission

• Candidate, who wishes to seek admission in a course of study prescribed for a post graduate degree of the University, shall be admitted to campus or an affiliated college unless he/ she has:

-passed the three years Bachelor's degree course Examination of the University of Uttar Pradesh or any other Indian University incorporated by any law in force at the time of admission. or

-passed any other equivalent examination recognized by the University as equivalent thereto. -passed any other equivalent examination recognized by a Foreign University as equivalent thereto

• The date of admission shall follow the University academic calendar.

1.4 Choice of Subject and Course Structure

- i. University/ College shall admit students as per the eligibility criteria and availability of seats decided by the university.
- ii. A student shall take admission to post graduation first year of fourth year of Higher Education program of NEP 2020 after successful completion of Graduate course from NEP 2020 or old course of Science/ Arts/ Commerce/ Management, etc. He/she shall have to choose respective faculty courses as per guidelines of NEP 2020 depending on the number of seats available in concerned subject and eligibility criteria. In case a candidate is willing to change the faculty, the following condition is required-

The candidate should have passed Bachelor degree in Science/ Commerce of NEP 2020 or old courses may take admission in some subjects of Arts faculty (excluding practical subjects like geography, psychology etc). Similarly, the Student from Commerce of NEP or old course of commerce may also be eligible to take admission in Arts subjects. Arts, Management and Commerce candidates cannot be admitted in science subjects.

- iii. Student(s) shall select subjects for post-graduation course from the major subjects that he / she had opted in the graduation course and shall continue with the same subjects in all the four semesters of the PG programme.
- iv. The course structure shall be as follows:

There shall be four compulsory theory papers in the first semester. In the second and third semester there shall be two compulsory papers and one/two elective papers. The elective papers are the specialization papers.

Student(s) shall have to select one Minor Elective Course as **Minor subject** from any other faculty (except own faculty) or interdisciplinary subject in the first semester of the first year.

- v. Student(s) shall take a Research Project /Survey/ Industrial /Field training program in both the years (Semester II and IV). No pre-requisite shall be required for this.
- vi. List of Minor Elective Course: The candidate shall select any one subject from the following as minor subject in first year of post graduate course.

S No	Science	Arts	Commerce	Interdisciplinary
1.	Mathematical Biology	Tribal Culture and Heritage	Customer Relation Management	Ancient Medical Sciences
2.	Conservation and Water Resource Management	Principle of Administration and Implications	House Keeping and Hospitality	Traditional Medical Therapy
3.	Natural Resources and Conservation	Socio- Economics and Social Security	Share Market and Banking	Vedic Mathematics
4.	Pollution: Causes and Mitigation	Archeological Sites and Monuments	Retail Management and Accounting	Bio Medical Instrumentation and Health
5.	Computational Resources	Indian Constitution	Insurance Policy and Finance	Disaster, Mitigation, & Management
6.	Organic and Natural Farming	Communicatio n and Soft Skill		Mining Plan and Resource Mapping
7.	Computer Hardware Handling	Sanskrit Knowledge System		Water Treatment System
8.	Computer Software Handling	Technical Translation and Trans creation		Climate Change and Environmental Degradation
9.	Solar and Non Conventional Energy	Urban Economics and Planning		Medicinal and Aromatic Plants Cultivation, extraction and nutraceutical

			Values
10.	Cyber Crime	Actuarial Economics	
11.	Bee Keeping, Aquaculture and Fish Farming	Social Sector and Gender Economics	Non Conventional Energy Resource
12.	Entrepreneurship in Microbial and Botanical Products	Environmental Economics	Soil and Water Testing
13.			

Elective papers: The student(s) shall select any twosubject from the following as elective subject

S. No.	Paper Code / Paper name	
1	70653 Fluid Dynamics	
2	70654 Mathematical Statistics	
3	70655 Advance Operation Research	

Elective Table no-1(b) (Third Semester)

S. No.	Paper Code / Paper name
1	70656 Graph Theory
2	70657 Special Function
3	70658 Java Programming

Elective papers: The student(s) shall select any twosubject from the following as elective subjects

Table II0-1(c) (Fourth Semester)			
S. No.	Paper Code / Paper name		
1	70663 Partial Differential Equations		
2	70664 Theory Relativity		
3	70665 Bio-Mathematics		

Table no-1(c) (Fourth Semester)

Table no-1(d) (Fourth Semester)

S. No.	Paper Code / Paper name
1	70666 Theory of Queues
2	70667 Theory of Fuzzy Sets and Applications
3	70668 Numerical Solution of ODE & PDE

2. SEMESTER AND CREDIT DISTRIBUTION

An academic year for post graduate program is divided into four semesters. The Odd semester may be
scheduled from July to December and Even semester from January to June.
Fourth Year

	VII Sem	Credits	VIII Sem	Credits
Major	Theory – 04	5 Credits each	Theory – 04	5 Credits each
	Papers	Total Credits=20	Papers	Total Credits=20
	Or	Or		Or
	Theory – 04	4 Credits each	Or	4 Credits each
	Papers	Total Credits=16	Theory – 04	Total Credits=16
	Practical -02	2 Credit each	Papers	2 Credit each
		Total Credits=4	Practical -02	Total Credits=4
		Total Credits=20		Total Credits=20
Minor	Minor	04 Credits		
	Elective-1			
	paper of 04			
	credits			
		Total Credits=04		
Research	One of each 04	04 Credits	One of each 04	04 Credits
Project/	Credits		Credits	
Industrial				
training/		Total Credits=04		Total Credits=04
Survey/ Field				
Training				
Total Credits		28		24
Total in Both	52 Credit			
Semester				

<u>Fifth Year</u>

Semester	IX	Credits	X	Credits
Major	Theory – 04	5 Credits each	Theory – 04	5 Credits each
_	Papers	Total Credits=20	Papers	Total Credits=20
		Or		Or
	Or		Or	
		4 Credits each		4 Credits each
	Theory – 04	Total Credits=16	Theory – 04	Total Credits=16
	Papers	2 Credit each	Papers	2 Credit each
	Practical -02	Total Credits=4	Practical -02	Total Credits=4
		Total Credits=20		Total Credits=20
Research	One of each 04	04 Credits	One of each 04	04 Credits
Project /	Credits		Credits	
Industrial				

training /		Total Credits=04	Total Credits=04
Survey			
Total		24	24
Credits		24	24
Total in			
Both	48 Credit		
Semester			

3. ATTENDANCE

The expression "a regular course of study" wherever it is used in these Ordinances, means attendance of at least 75% of the lectures and other teaching in campus / affiliated college in the subject for the examination at which a candidate intends to appear and at such other practical work (such as work in a laboratory) as is required by any Statute, Ordinance or Regulation in force for the time being in the University.

A shortage up to 5% of the total number of lectures delivered or practical work done in each subject may be condoned by the principal of the college/ Head of the Department (in case of University Campus) concerned.

A further shortage up to 10% may be condoned only by the Vice- Chancellor on the specific recommendation of the principal of the college/Head of the Department concerned (in case of University Campus).

4. EXAMINATIONS

- 1. There shall be examinations at the end of each semester as, for odd and even semesters in accordance with the academic calendar of the university. A candidate who does not pass the examination in any course(s) shall be permitted to appear in such failed course(s) in the subsequent examinations upto the maximum duration of the course.
- 2. A candidate should get enrolled/ registered for the first semester examination and is mandatory. If enrolment/ registration is not possible owing to shortage of attendance / rules prescribed OR belated joining or on medical grounds, such students shall not be permitted to proceed to the next semester. Such students shall re-dothe first semester in the subsequent term of that semester as a regular student; however, a student of first semester shall be admitted in the second semester, if he/she has successfully completed the first semester.
- **3.** It shall be mandatory for the student(s) to register for examination in each and every semester (i.e. to fill up the examination form with the requisite fee). If a student fails to register for the examination in any semester, he or she shall not be allowed to appear in that semester as a back paper student. Such student(s) shall appear in the (next) subsequent examination of that semester.

5. EVALUATION

The performance of a student in each course is evaluated in terms of percentage of marks with a provision for conversion to grade point. Evaluation for each course shall be done by a Continuous Internal Assessment (CIA) by the concerned course teacher as well as by end semester examination and will be consolidated at the end of course. The evaluation must be continuous and holistic and should be based on following parameters:

- i. Academic assessment
- ii. Skill assessment
- iii. Physical assessment
- iv. Personality assessment
- v. Extra-curricular assessment

5.1 THEORY PAPER

Semester Examinations shall be conducted by the university as mentioned in the academic calendar. The Question paper will be set by the examiners appointed by the Vice Chancellor based on the recommendation of the board of studies. The pattern of the question paper shall be as given in annexure II.

- i. Internal Assessment(C.I.A.) -25% weightageofacourse
- □ Test/ Mid-Term Assessment 10 marks
- Image: Term paper/Presentation on given project/assignment 10marks
- Attendance/activities 05marks
- ii. End Semester Exam (External examination)-75% weightage of course

5.2 PRACTICAL PAPER

Practical examinations will be conducted by the examiners appointed by the Vice Chancellor on the recommendations of the Board of Studies. Each student has to present the practical records.

- i. Internal Assessment(C.I.A.) -25% weightageofacourse
- □ Test/ Mid-Term Assessment 10 marks
- Image: Term paper/Presentation on given project/assignment 10marks
- \Box Attendance/activities 05marks
- ii. End Semester Exam (External examination)-75% weightage of a course

MINIMUM PASSING STANDARD

- 1. The minimum passing standard for combined external and internal examinations for each subject/paper shall be 45%, i.e. 45 out of 100 marks for theory and practical courses. The minimum passing standard for Aggregate in a semester end Examination shall be 45%.
- 2. Continuous Internal Assessment (CIA) shall be ensured by the Principal of the colleges / HODs for the Campuses courses. The Principal of the colleges / HODs of the Campus shall provide the marks of the same to the university and it shall be mandatory to maintain the records of the same till the maximum duration of that course.
- 3. The internal assessment, field training and practical examination awards of a student who fails in any

semester examination shall be carried forward to the next examination.

4. It shall be mandatory for a student to secure minimum 45% marks (i.e. 34/75) in the theory and practical paper separately.

```
•••••
```

PROVISION FOR BACK PAPERS AND EX-STUDENTS

A Back Paper (B.P.) candidate shall be promoted to next semester. The back paper facility in a semester provides promotion to the next semester and another opportunity to obtain a minimum of the pass marks assigned for an individual paper or in the aggregate. Following category of students of Bundelkhand University shall be eligible for back paper facility as under, student shall be required to pass in minimum two subject papers in each semester. However, at the end of each year, it shall be mandatory for a student to pass in at least two subjects papers and elective paper otherwise he/she shall be deemed as failed and will be treated as a year back / ex- student.

- 5.Students shall get the attempts to appear in the Back paper examination in the subsequent odd /even semester till the maximum duration of the said course.
- 6.Special back paper examination shall be held only for regular students of the final year of PG course.
- 7. The candidates who fail in more than three of the total papers, will be deemed as failed. These candidates can appear only in subsequent examination of that semester as Ex- Students.

8. PROMOTION RULES

8.1Semester Course & Examination:

The students who have taken admission in any post-graduation programme in a session and who have put in the minimum percentage of attendance for appearing at the Examination, presented himself/herself for internal assessment and have filled in the examination form in time for appearing at the End Semester Examination shall be allowed to appear at the respective examinations.

8.2Declaration of results

After appearing in the Examination of both the semesters in a particular year, the student can be put in the following categories in the context of declaration of the results of the Semester Examination:

Passed Promoted with Back Paper(s) Failed

8.3 Promotion to next Semester:

All students under category Passed and promoted with back papers shall be promoted to the next Semester.

"Failed" students may clear their UNCLEARED courses in subsequent examinations as ex-students.

Students promoted with back papers shall clear their back papers in subsequent examinations as exstudents.

- A student who has failed in a course shall get two more chances to clear this course subject to the maximum duration for passing the course. Further, each candidate shall have to clear all the courses within the maximum period of seven years from the date of his/her latest admission.
- A candidate who has qualified for the Degree shall be placed in the First / Second Division as per following table:

8. COMPUTATION OF SGP AND CGPA

The guidelines formulated by Bundelkhand University shall be followed in order to bring uniformity in evaluation system of every CBCS based Course and computation of the SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average)basedon students' performance in examination. The number of core, elective, open elective papers and foundation papers and the required credit for each paper shall be formulated by respective Board of Studies (BOS) and faculty board. For the purpose of computation of work load the UGC proposed mechanism is adopted i.e. one credit=1 Theory period of one hour duration, 1credit=1 Practical period of one hour duration. The credit(s) for each theory paper/practical/tutorial/dissertation will be as per the respective Board of Studies of departments.

Letter Grade	Numerical grade
O (outstanding)	10
A+ (Excellent)	9
A(very good)	8
B+(Good)	7
B(average)	6
F(Fail)	<5
Ab (Absent)	0

The minimum passing marks shall be 45% of the maximum marks as prescribed in the University Examination and 45% of marks in the aggregate marks in the subject including internal / sessional marks.i.e. Minimum Passing Grade is "B".

A student who obtains Grades "O" or "B" shall be considered as PASSED. If a student secures "F" grade, he/she shall be considered as FAILED and shall have to re appear in the examination. It is mandatory for a student to earn the required SGPA as in each semester. If a student is not able to secure 45% / B grade in any theory / practical / internal / sessional / viva-voce / internship / project examination, the awarded grade point shall be ZERO (0).

9.1 The University, adopts absolute grading system where in the marks are converted to grades, and every semester results will be declared with semester grade point average(SGPA) and year result will be declared with year grade point average (YGPA). The Cumulative Grade Point Average (CGPA) will be calculated in end of final semester. The grading system except pharmacy department will be with following letter grades and grade points scale as given below:

Level	Outstanding	Excellent	Very Good	Good	Average	Fail
Letter Grade	0	A+	Α	B +	В	F
Grade Points	10	9	8	7	6	0
Score (Marks) Banga	≥90	<90, ≥80	<80, ≥70	<70, ≥60	<60, ≥45	<45
(%)	(90-100)	(80-89.99)	(70-79.99)	(60- 69.99)	(50-59.99)	(0-35.99)

1.1 A student obtaining Grade "F" shall be considered failed and will be required to reappear in the examination. Such students after passing the failed subject in subsequent examination / will be awarded with grade respective of marks he/she scores in the subsequent examination/s.

1.2 The University has the right to scale/moderate the theory exam / practical exam / internal exam / sessional marks of any subject wheneverrequired for converting of marks into letter grades on the basis of the result statistics of university as in usual practice, i.e. marks obtained in decimal will be converted in nearest integer.

9. CONVERSION OF GRADES IN TO PERCENTAGE

1.3 Conversion formula for the conversion of CGPA into Percentage is CGPA Earnedx10= Percentage of marks scored.

Illustration: CGPA Earned8.2 x10=82.0%

2. AWARD OF DIVISION

Division shall be awarded only after the final semester examination based on integrated performance of the student for all the semesters as per following details.

- **2.1** A student who qualifies for the award of the degree securing "B" or above grades in all subjects pertaining to all semesters, and in addition secure as a CGPA of 8.0 and above shall be declared to have passed the examination in **FIRST DIVISION WITH HONOURS**.
- **2.2** A student who qualifies for the award of the degree securing "B" or above grades in all subject pertaining to all semesters, and in addition secures a CGPA of 7.0 and above shall be declared to have passed the examination in **FIRST DIVISION**.

2.3 A student who qualifies for the award of the degree securing "B" or above grades in all subjects pertaining to all semesters, and in addition secures a CGPA of 5.0 and above shall be declared to have passed the examination in **SECOND DIVISION**.

10. UNFAIR MEANS:

Cases of unfair means in the End Semester Examinations and Mid-Term Tests shall be dealt as per the rules laid by the University.

Note:

1. Those students who are NOT eligible for promotion to next year shall have to reappear in the coming examination as ex-students. However, the marks of internal assessment shall be carried forward in such cases.

2. Scrutiny facility and Challenge evaluation facility shall be available for those students who want to improve their grades.

	Semester wise titles of the paper in M.Sc./ M.A. Mathematics course								
Year	Semester	Course Code	Paper Title	Compulsory/Elective	Internal	Externa l	Total	credits	Cumulative minimum credits require for the award of the degree
			Bachelor	(Research) in Mathema	atics				
First Year		60651	Advanced Abstract Algebra	Compulsory paper I	25	75	100	5	
	(Aftor	60652	Real Analysis	Compulsory paper II	25	75	100	5	28
	B.Sc.) VII /	60653	Differential Equations	Compulsory paper III	25	75	100	5	In 15x28
	t to M.Sc.	60654	Integral equations	Compulsory paper IV	25	75	100	5	=420 Hours
Bachelo r	1 Sem		Minor Elective	Elective 1(a) (Interdisciplinary)	25	75	100	4	
(Resear ch) in		600655	Research Project/In Training	ndustrial Training/Field	25	75	100	4	
faculty	Total					450	600	28	
		60656	Topology	Compulsory paper I	25	75	100	5	
		60657	Complex Analysis	Compulsory paper II	25	75	100	5	
	(After B.Sc.)	60658	Differential Geometry	Compulsory paper III	25	75	100	5	24 In 15x24
	Equivalen	60659	Numerical Analysis	Compulsory paper IV	25	75	100	5	=360 Hours
	II Sem	600660	Research Project/In Training	ndustrial Training/Field	25	75	100	4	
				Total	125	375	500	24	
	Grand Total VII and VIII Semester Or Grand Total I and II Semester				275	825	1100	28+24 =52	132*+52 = 184

Second Year	(After	70651	Number Theory	Compulsory paper I	25	75	100	5	
	B.Sc.) IX / Equivala	70652	Mathematical Methods	Compulsory paper II	25	75	100	5	24
	nt to		Elective	Choose from elective table-1(a)	25	75	100	5	In 15x24 =360
	III Sem		Elective	Choose from elective table-1(b)	25	75	100	5	Hours
Master		700659	Research Project/In Training	dustrial Training/Field	25	75	100	4	
in	Total					375	500	24	
faculty	(Aftor	70661	Functional Analysis	Compulsory paper I	25	75	100	5	
	B.Sc.) X	70662	Measure Theory	Compulsory paper II	25	75	100	5	
	/ Equivale		Elective	Choose from elective table- 1 (c)	25	75	100	5	24 In 15x24
	nt to M.Sc.		Elective	Choose from elective table-1(d)	25	75	100	5	=360 Hours
	IV Sem	700669	Research Project/In Training	dustrial Training/Field	25	75	100	4	

	Tota	125	375	500	24	
	Grand Total IX and X Semester Or Grand Total III and IV Semester	250	750	1000	24+2 4=48	184+48= 232

	Sem	ester wis	e titles of the pa	aper in PGDR/Docto	r of Philos	ophy in n	athem	atics	
Year	Semester	Course Code	Paper Title	Compulsory/Elective	Internal	Externa l	Total	credits	Cumulative minimum credits require for the award of the degree
			PGI	DR in mathematics					
		-	Paper I	Elective paper I	25	75	100	6	
		-	Paper II	Elective paper II	25	75	100	6	16
	XI	-	Research Methodology	Compulsory Paper III	25	75	100	4	In 15x16 =240 Hours
			Research Project/Industri al Training/Field Training	Qualifying	25	75	100	1	232+16= 248
Doctor of Philosophy in Mathematics									
	XII - XVI			Ph.D. Thesis					

M.Sc. (Mathematics) First Semester Paper ADVANCED ABSTRACT ALGEBRA

Dept of Math.		Batch: 2022-24
Ann	lications	
Prog	gram: M. Sc.	Current Academic Year: 2022-23
Brar	nch: Mathematics	Semester: I
1	Course Code.	50872
2	Course Title	ADVANCED ABSTRACT ALGEBRA
3	Credits	5
4	Contact Hours (L-T-P)	60-30-00
5	Course Objective	 To familiarize students with basic concepts of group, subgroup, quotient group and permutation groups, and given an idea of the normal subgroup, sylow groups, internal and external directproduct. To make students familiar with the concept of homomorphism, isomorphism, automorphism,ring, integral domain, field, ideal ,quotient ring, prime and maximal ideal, Irreducible polynomials, principal ideal domains, unique factorization domains, Extension of fields: algebraic extensions, roots of polynomials and splittingfields.
6	Course Outcomes	 CO1: Understand the concept of Symmetric group, Alternating group, Simple group, Homomorphism of group, Isomorphism of group, conjugate elements, Class equation, Solvable group, Direct product, CO2: Complete knowledgeofIdeals, prime ideal, Maximal ideals, Euclidean ring, Unique factorization domain, Quotient field, Finite field, Modules CO3:Know the concepts of Algebraic extension, Finite extension, Splitting field, Normal extension, Field extension CO4: Develop the understandingabout Automorphism group, Fixed field, Fundamental theorem of galois theory, Fundamental theorem of algebra, Polynomial solvable by radicals, Straight edge and compass construction

7	Learning	This course helps to develop abstract mathematica	al thinl	king.	After	completion		
	outcome of this course, the student will be able to understand the composition series							
	Jordan Holder Theorem, solvable group, Nilpotent groups Further they will							
		understand field extension, galios theory which helps in appearing various						
		competitive exams and develops research aptitude				_		
8		Syllabus and Teaching Plan						
Unit No.		Unit Name	L 60	Т 30	P 00	CO Mapping		
Ι	Group		Total	Lec= 3	0			
I. 1	Symmetric group,	Alternating group, Simple group	6=4(L) + 2(T)		CO1		
I. 2	Homomorphism o	f group, Isomorphism of group	4=2(L)+2(T)		CO1		
I. 3	conjugate element	s, Class equation of finite group, cauchys theorem	6=4(L)+2 (T)		CO1		
ТЛ	tor finite group	n sylows theorem. Jorden holder theorem	5-3(I)+2 (T)		CO1		
1. 4 1 5	Lagranges theorem	irect product	9-6(I	$\frac{(1)}{(1)}$		CO1		
т. <i>5</i> тт	$\begin{array}{c} \text{Diracle group, Direct product} \\ \hline \textbf{Ping, Modules} \\ \hline \textbf{Total Log- 22} \\ \hline \end{array}$							
II 1	King, Wouldes					CO2		
$\frac{11.1}{11.2}$	Maximal ideals		4=3(L)+2(T))	CO2		
II. 2 II. 3	Euclidean ring. No	petherian rings	5=4(L) + 1(T))	CO2		
II. 4	Unique factorization	2=1(L) + 1 (T))	CO2			
II. 5	Ouotient field		3=1(L) +2 (T)	CO2		
II. 6	Finite field		3=2(L)+1 (T))	CO2		
III	Extension field		Total	Lec=1	5			
III. 1	Algebraic extension	on	4=3(L)+1 (T))	CO3		
III.2	Finite extension		3=2(L) + 1(T))	CO3		
III. 3	Splitting field, roo	ts of unity	3=2(L)+1 (T))	CO3		
III. 4	Normal extension,	Field extension	3=2(L) + 1(T)		CO3		
III.5	Automorphism of	field extension	3=2(L)+1 (T)		CO3		
IV	Galois theory		Total	Lec= 2	1			
IV. 1	Elements of galois	stheory	4=3(L)+1 (T))	CO4		
IV. 2	Automorphism group 2=1(L))	CO4		
IV. 3	Fixed field		2=1(L)+1 (T)		CO4		
IV.4	Fundamental theorem	rem of galois theory	3=2(L)+1 (T)	CO4		
IV.5	Fundamental theorem	rem of algebra	2=2(L)		CO4		
IV.6	Polynomial solvab	ble by radicals	4=3(L) +1 (T)	CO4		
IV.7	Straight edge and	Traight edge and compass construction $4=3(L)+1(T)$ CO4						

9	Mode of examination	Theory		
10	Marks Distribution	Internal examination 25 Marks	External Examination 75 Marks	
11	Reference books	 I. N. Herstain, Topics in Algebra, P. B. Bhatacharya, S. K. Jain and (2ndEdition) Cambridge Universi Algebra, Vivek Sahai and Vikas E House. V. K. Khanna and S. K. Bhamri, A John B. Fraleigh, A First Course i Pearson Education. 	Wiley EasternLtd., New Delhi. S. R. Nagpal, Basic Abstract Algebra ty Press, Indian Edition. Bist, Narosa Publication Publishing A course in abstract Algebra, 4th.Ed in Abstract Algebra, Seventh Edition,	

	BUNDELKHAND	UNIVERSITY JHANSI
DEPARTI	MENT OF	Batch 2022-2023
MATHEN	IATICAL SCIENCES	
AND CON	MPUTER	
APPLICA	TIONS	
Program 1	M.Sc (Mathematics)	Current Academic Year 2022-2023
Branch: D	Differential Equations	First Semester
1	Course Code	60653
2	Course Title	Differential Equations
3	Credits	6
4	Contact Hours (L-T-P)	04-04-00
5	Course Type	Compulsory
6	Course Objective	1. How to create mathematical model of any physical situation.
		2. To understand the various parameters of the physical situation and then making a
		rough mathematical model.
		3. Posing a corresponding precise mathematical problem and analyzing it, trying to
		find an exact or approximate solution.
		4 Comparing the result with the experimental data to check the validity of the model
7	Course Outcome	CO1:Basic Concepts
		CO2:Differential equation of first order and first degree
		CO3:Differential equation of first order but not of first degree
		CO4:Second order equations
		COS: Initial and boundary value problems
		CO5:Series Solutions
		variables
8	Course Description	Basic Concents: Origins and formulation. Order and degree Linear and nonlinear Solution of
0	Course Description	a differential equation Wronskian
		Differential equation of first order and first degree. Equations in which variables are
		separated Homogeneous equation Reducible to homogeneous Linear differential equations
		Reducible to linear form Exact differential equation Change of variables Integrating factor
		Differential equation of first order and but not of first degree: Solvable for p Solvable for
		x or y. Homogeneous equation Clairaut's equation
		Second order equations: Complete solution in terms of a known integral Removal of first
		derivative Transformation of the equation by changing the independent variable Method of
		Variation of parameters Singular Solutions Simultaneous equations Total differential equations
		Initial and boundary value problems: Existence and uniqueness theorem Strum- Liouville
		equation
		Series Solutions: Series solution of a differential equations Legendre's Function Bessel's
		Function
		Solution ofLaplace, Heat and Wave equations using the method of separation of
		variables

	Syllabus Outline	CO Mapping
Unit Number	Unit Name	
Ι	Basic Concepts	
1.1	Origins and formulation	CO1
1.2	Linear and nonlinear	CO1
1.3	Solution of a differential equation	CO1
1.4	Wronskian	CO1
II	Differential equation of first order and first degree	
2.1	Equations in which variables are separated	CO2
2.2	Equations in which variables are separated	CO2
2.3	Homogeneous equation	CO2
2.4	Reducible to homogeneous	CO2
2.5	Linear differential equations	CO2
2.6	Reducible to linear form	CO2
2.7	Exact differential equation	CO2
2.8	Change of variables	CO2
2.9	Integrating factor	CO2
III	Differential equation of first order but not of first degree	
3.1	Solvable for p	CO3
3.2	Solvable for x	CO3
3.3	Solvable for y	CO3
3.4	Homogeneous equation	CO3
3.5	Clairaut's equation	CO3
IV	Second order equations	
4.1	Complete solution in terms of a known integral	CO4
4.2	Removal of first derivative	CO4
4.3	Transformation of the equation by changing the independent variable	CO4
4.4	Method of Variation of parameters	CO4
4.5	Singular Solutions	CO4
4.6	Simultaneous equations	CO4
4.7	Total differential equations	CO4
V	Initial and boundary value problems	
5.1	Existence and uniqueness theorem	CO5
5.2	Strum- Liouville equatiuon	CO5
VI	Series Solutions	
6.1	Series solution of a differential equations	CO6
6.2	Legendre's Function	CO6
6.3	Bessel's Function	CO6
VII	Solution of Laplace, Heat and Wave equations using the	
	method of separation of variables	
7.1	Laplace Equation	CO7
7.2	Heat Equation	CO7
7.3	Wave Equation	CO7

Mode of Examination	Theory		
	CA	MTE	ETE
Weightage Distribution	5%	20%	75%
Text Book	Differential Equations by	V Simmons G.F	
Other References	Introduction of Ordinary Differential Equations by Rabenstein Theory of Ordinary Differential Equation by Coding E.A.		

Department of Mathematical Science and Computer Application Batch:			Batch:2022-23	
Program: M.Sc.		CurrentAcademicYear:2022-23		
Subject: Mathematics		Semester: I		
1	CourseCode	eCode 60654		
2	CourseTitle	Integral Equation		
3	Credits	5		
4	ContactHours (L-T-P)	60-30-0		
	CourseType	Compulsory		
5	CourseObj ective	 The objective of the course module is to study Integral Equations and to know that what is the relationship between the integral equations and ordinary differential equations and how solved the linear and non linear integral equations by different methods with some problems which give rise to Integral Equations. Problems in which integral equations are encountered include radiative energy transfer and oscillation of a string, membrane, or axle. Students will have much better and deeper understanding of the fundamental concepts of a weak and a strong relative minimum of an integral. 		
6	CourseOut comes	 CO1:Understand the basic definitions and identities for integral equations, various methods to solve Volterra integral equations of first and second kind. CO2:Categorize and solve different integral equations using various techniques. CO3:To gain knowledge about various type of Kernal and solving methods. CO4:Learn methods to solve various mathematical problems using different techniques. CO5:Describe importance of Green's function method for solving boundary value problems associated with non homogeneous ordinary and partial differential equations 		
7	CourseDescr iption	This course emphasizes concepts and techniques for solving integral equations from an applied mathematics perspective. Material is selected from the following topics: Volterra and Fredholm equations, Fredholm theory, the Hilbert-Schmidt theorem; the Hilbert Problem.Using the newly developed methods, the author successfully handles Fredholm and Volterra integral equations, singular integral equations, integro-differential equations and nonlinear integral equations, with promising results for linear and nonlinear models. Many examples are given to introduce the material in a clear and thorough fashion. In addition, many exercises are provided to build confidence, ease and skill in using the new methods.		
8	Outlinesyllabus		COMapping	
	Unit1	Linear integral equation		
	A	Definition, Classification of Linear Integral Equations, Fro Integral Equations, Volterra Integral Equations, Singular- Equations,	edholm CO1, Integral	
	В	Types of Kernels, Symmetric Kernel, Separable Kernel, ResolventCO1,CO2 Kernel, Iterated Kernel, Solution OfKernals, Problems		

С	Relations between differential and integral equations, Leibnitz Rule of CO1,CO2 Differentiating Under The Integral SignFormula for converting a		
	multiple integral into a single ordinary integral		
Unit2	Conversion of ordinary differential equations into integral equations		
А	Introduction, Initial value problem, Method converting an initial value	CO1	
	problem into a volterra integral equation		
В	Boundary value problem, Method converting an initial value problem	CO1,CO2	
	into a Fredholm integral equation		
С	Alternative method and formulae, Problems	CO2	
Unit3	Homogeneous Fredholm Integral equation second kind		
A	Definition and threoms, Characteristic values and characteristic function	CO1,CO2,CO3	
В	Separable kernels, Topic based problem	CO2,CO3	
С	Resolvent kernels, Topic based problem	CO2,CO3	
 Unit4	Method of successive Approximation		
Α	Iterated kernels or function, problem	CO2,CO3	
В	Reciprocal functions, problem	СОЗ,	
С	Neumann series, problem	СОЗ,	
Unit5	Symmetric kernels and Green theorem		
А	Symmetric kernels & regularity conditions	CO2,CO4	
В	Hilbert-Schmidt theorem, Reisz-Fischer's theorem.	CO4	
С	Green Theorem, Problem	CO5	
Modeof examination	Theoretical		
Textbook/s*	RaisinghaniM D ,2016, Integral Equations and Boundary Value Problems, S Chand Publication Swarup Shanti 2020 Integral Equations Krishna Publication	1	
OtherRefer	1. Potter and J. Goldberg, 2000, Mathematical methods, Prentice Hall	of India	
ences	2. Kanwal R. P., 1997, Linear integral equations, Academic Press, New	York	
3. Lovin, W.W. 2005 Linear Integral Equation Dover Publications			
	Cochram J.A An Analysis of Linear Integral Equations		

REAL ANALYSIS

Dept of MathSci.and		Batch: 2022-24
Comp. Applications		
Program: M. Sc.		Current Academic Year: 2022-23
Branch: Mathematics		Semester: I
1.	Course Code.	60652
2.	Course Title	REAL ANALYSIS
3.	Credits	5
4.	Contact Hours (L-T-P)	60-30-00
5.	Course Type	Compulsory paper II
6.	Course	3. Preliminaries to learn the basic concept of Set Theory in details including
	Objective	Metric Space, Connected Sets, Compact Sets and BWP.
		4. To inculcate Knowledge about Extended Real Numbers, Functions, Limit
		and Continuity.
		5. To inculcate Knowledge about the theoretical Concept of Differentiability.
		6. To inculcate Knowledge about the theoretical Concept of Riemann–Stieltjes integral.
		7. To learn and understand the basics of Series and Sequences
7.	Course	CO1: Students shall develop the sound understanding of the Set Theory, Real
	Outcomes	Numbers, Series and Sequences.
		CO2: Students shall be able to understand the theoretical concept of Functions,
		Limit and Continuity.
		CO3: Students shall develop the deep understanding of the theoretical Concept of
		Differentiability.
		Stielties integral
8	Loorning	This course helps to develop mathematical concept and thinking about the
0.	Outcomos	Principles of Mathematical Analysis. After completion of this course, the
	Outcomes	student will be able to understand the theoretical knowledge of Real Numbers,
		Continuity, Differentiability and Integrability which helps in appearing various
		competitive exams and also incurcate research apitude.

	Syllabus and Teaching Plan				
Unit No.	Unit Name	L 60	Т 30	P 00	CO Mapping
Ι	Basic concept of set theory, Real Number System	Total	Lec= 17	7	
I. 1	Completeness property in 'R'	2=1(L)+1(T)		CO1
I. 2	Countable and uncountable sets	3=2(L)+1(T)		CO1
I. 3	Limit point, open set closed set, dense sets,	5=3(L) +2(T)		CO1
I. 4	Neighborhoods of a set	3=2(L) +1(T)		CO1
I. 5	Bolzano Weiertrass theorem	4=2(L)+ 2(T)		CO1
II	Extended real number system	Total	Lec= 20)	
II. 1	Limit and continuity of real function and their properties	3=2(L)+1(T)		CO2
II. 2	Continuity and Compactness	3=2(L)+1(T)		CO2
II. 3	Continuity and Connectedness	5=3(L)+ 2(T)		CO2
II. 4	Discontinuity of different kind	2=2(L)		CO2
II. 5	Discontinuity of Functions, Derivability	2=2(L)		CO2
II. 6	Example based on continuity, connectedness	2=1(L)+1(T)		CO2
II. 7	Example based on discontinuity	3=2(L)+1(T)		CO2
III	Mean value theorem	Total	Lec= 19)	
III. 1	Derivatives, Derivativeness of higher order and continuity of Taylor Theorem	2=2(L)		CO3
III.2	Fundamental theorem on integral calculus	6=3(L) +3(T)		CO3
III. 3	Taylors theorem for function of two variables	4=2(L)+2 (T)		CO3
III. 4	Example based on fundamental theorem on integral calculus	2=2(L)		CO3
III.5	Illustrative example on Taylors theorem	3=2(L)+1(T)		CO3
III. 6	Illustrative example on mean value theorem.	2=1(L)+1(T)		
IV	R-S integrals	Total	Lec= 11		
IV. 1	Basic definition's of Riemann integral	5=3(L)+2 (T)		CO4
IV. 2	Integrability of continuous and monotonic functions	2=2(L)		CO4
IV. 3	Some example on R-S integrals problem	4=2(L)+2 (T)		CO4
V	Series & Sequencing	Total	Lec= 7		
		7=5(L)+ 2('	Γ)	CO4
VI	Definition and existence of the integral, Integral as a limit of sum	Total	Lec=16		
VI.1	Improper integrals and their convergence	3=2(L)+1 (T)		CO4
VI.2	Comparison text, mu-test, Abels test	3=2(L) +1(T)		CO4
VI.3	Drichlets test	2=2(L)		CO4
VI.4	Integral as a parameter and its differentiability and integrability	2=2(L)		CO4
VI.5	Example on R-S integrals	3=2(L)+1 (T)		CO4
VI.6	Example on proper and improper integrals	3=2(L)+1 (T)		CO4

9	Mode of Examination	Theory (Descriptive)			
10	Marks	Internal Assessment External Examination			
	Distribution	25 Marks	75 Marks		
11	Reference Books	 Principles Mathematical Analysis: Walter Rudin Introduction to Real Analysis: Robert G. Bartle Real and Complex Analysis: Walter Rudin 			

Complex Analysis

Dept of Math. Sci.and Comp. Applications		Batch: 2022-24
Program: M. Sc.		Current Academic Year: 2022-23
Brancl	h: Mathematics	Semester: II
1	Course Code.	1037
2	Course Title	Complex Analysis
3	Credits	5
4	Contact Hours (L-T-P)	60-30-00
5	Course Objective	This course is aimed to provide an introduction to the theories for functions of a complex variable. The concepts of analyticity, Cauchy-Riemann relations and harmonic functions, Complex integration and complex power series are presented. Discuss the classification of isolated singularities and illustrate the applications of the calculus of residues in the evaluation of integrals. Students will study properties of conformal mappings and their relations with analytic functions
6	Course Outcomes	 CO1: Discuss Function of a complex variablethe concept of complex number and its algebra calculates continuity, differentiability, analyticity of a function and analyze the derivative of a function. Describe the concept of analytic function and check the analyticity of the functions. CO2: Demonstrate the understanding of conformal mappings and Construct conformal mappings between many kinds of domain, Linear and bilinear transformations CO 3 Illustrate the concept of complex integration, write the Green's theorem, anti-derivative theorem, Cauchy-Goursat theorem, Cauchy's integral formula, Liouville theorem, Morera's theorem CO 4: Discuss the concept of singularities, Fundamental theorem of algebra, Taylor and Laurent series CO 5: Explain Cauchy's residue theorem, evaluate the definite integrals using Cauchy's residue theorem
	Program Outcomes (PO's)	 PO1: Mathematical knowledge: Application of Mathematical knowledge in various fields of science, engineering and management etc. PO2: Nature of Mathematics: Understand the concise, precise and rigorous nature of Mathematics. PO3: Critical thinking: Develop the skill to think critically on abstract concepts of Mathematics.

r	
	PO4: Problem analysis: Develop the ability to analyze a problem logically and dissect into
	micro-parts and thus resolving the problem to accessible components.
	PO5. Mathematical logic and Ethics. Formulates and develops mathematical arguments in
	i ob. Humananda logic and interest for and excloses induced against and and the second s
	logical manner and keanze and understand professional, ethical and cultural responsibilities.

7	Learning outcome	In the end of the course students will learn the fundamental concepts of complex integration, contour integration to evaluate complicated real integrals using residue calculus and also know how to construct conformal mappings.
		After completion of this course, the student will be able to understand complex analysis which helps in appearing various competitive exams and develops research aptitude.
8		Syllabus and Teaching Plan

Complex Ana	alysis	L T P	CO Mapping
Unit No.	Unit Name	60 30 00 No. of Teachings days 90	
Ι	Funtion of a complex variable	Total Lec= 17	
I. 1	Concept of limit, continuity and differentiability of complex functions	2=1(L)+1 (T)	CO1
I. 2	Analytic functions	3=2(L)+1(T)	CO1
I. 3	Cauchy-Riemann equations	5=3(L)+2(T)	CO1
I. 4	Harmonic functions	3=2(L)+1(T)	CO1
I. 5	Orthogonal system	4=2(L)+2(T)	CO1
Π	Elementary function	Total Lec= 20	
II. 1	Mapping by elementary functions	3=2(L)+1(T)	CO2
II. 2	Linear and bilinear transformations	3=2(L)+1(T)	CO2
II. 3	Fixed points	5=3(L)+2 (T)	CO2
II. 4	Cross ration	2=2(L)	CO2
II. 5	Inverse points	2=2(L)	CO2
II. 6	Critical points	2=2(L)	CO2
II. 7	Conformal transformations	3=2(L)+1(T)	CO2
III	Complex integration	Total Lec=19	
III. 1	Line integral	2=2(L)	CO3
III.2	Cauchy fundamental theorem	6=3(L)+3(T)	CO3
III. 3	Cauchy integral formula	4=2(L)+2(T)	CO3
III. 4	Morera's theorem	2=1(L)+1(T)	CO3
III.5	Liouville theorem	3=2(L)+1(T)	CO3
III. 6	Maximum modulus theorem	2=1(L)+1(T)	CO3
IV	Singularities	Total Lec= 16	
IV. 1	Basic definition of singularities	5=3(L)+2(T)	CO4
IV. 2	Zeros of an analytic function	2=2(L)	CO4
IV. 3	Taylor and Laurent series	9=7(L)+2(T)	CO4

IV.4	Fundamental theorem of algebra	2=2(T)	CO4		
VI	The calculus of Residue	Total Lec=16			
VI.1	Residue at a pole	3=2(L)+1(T)	CO5		
VI.2	Computation of residue at a finite pole	3=2(L)+1(T)	CO5		
VI.3	Cauchy Residue theorem	2=2(L)	CO5		
VI.4	residue at a pole of order greater than unity	2=2(L)	CO5		
VI.5	Example on residue theorem	3=2(L)+1(T)	CO5		
VI.6	Computation of residue at infinity	3=2(L)+1(T)	CO5		
15 Week V	Working Days. = 90 Days (Excluding Holidays) in each	semester.			
Each Teac	Each Teaching shall consist of 60 minutes time duration.				

References:

1. Lars V. Ahlfors (2017). Complex Analysis (3rd edition). McGraw-Hill Education.

2. Joseph Bak& Donald J. Newman (2010). Complex Analysis (3rd edition). Springer.

3. James Ward Brown & Ruel V. Churchill (2009). Complex Variables and Applications (9th edition). McGraw-Hill Education. 4. Conway, John B., Functions of One Complex Variable, II, Graduate Texts inMathematics, 159, Springer-Verlag, New York, 1995.

5. E.T. Copson (1970). Introduction to Theory of Functions of Complex Variable. Oxford University Press.

6. Theodore W. Gamelin (2001). Complex Analysis. Springer-Verlag.

7. George Polya& Gordon Latta (1974). Complex Variables. Wiley.

8. H. A. Priestley (2003). Introduction to Complex Analysis. Oxford University Press.

9. E. C. Titchmarsh (1976). Theory of Functions (2nd edition). Oxford University Press.

10. Churchill, Ruel V. and Brown, JamesWard, Complex Variables and Applications, fourth edition, McGrawHill Book Co., New York, 1984.

11. Schaum's Outline of Complex Variables, 2ed by By Murray Spiegel, Seymour Lipschutz, John Schiller, Dennis Spellman

Kk				
	Department of mathematical sciences and computer applications			
Pr (2	ogram: M.Sc. vear)	Current Academic Year: 2022-23		
Br	year)	Semester: II		
N	lathematics)			
1	Course Code			
2	Course Title	Differential Geometry		
3	Credits	4		
4	Contact Hours	2-0-2		
	(L-T-P)			
	Course Type	Compulsory		
5	Course Objective	To get introduced to the concept of a regular parameterized c	urve. To	
	9	Understand the concept of curvature of a space curve and sig	ned curvature	
		of a plane curve. To be able to understand the fundamental t	heorem for	
		plane curves. To get introduced to the notion of Serret-Frene	et frame for	
		space curves and the involutes and evolutes of space curves v	with the help	
		of examples. To be able to compute the curvature and torsior	of space	
		curves. To be able to understand the fundamental theorem fo	r space	
		curves. To get introduced to the concept of a parameterized s	urface with	
		the help of examples. To Understand the idea of orientable/n	on-orientable	
		surfaces. To get introduced to the idea of first fundamental fo	orm/metric of	
		a surface. To Understand the normal curvature of a surface, i	ts connection	
		with the first and second fundamental form and Euler's theor	em. To	
		Understand the Weingarton Equations, mean curvature and C	Jaussian	
	<u>C</u>	curvature		
0	Course	CO-1: Define the equivalence of two curves find the derivative sector and the activation of two curves have be applying the sector.	ve map of an	
	Outcomes	theorems	some	
		CO.2: Defines surfaces and their properties, express definition	on and	
		parametrization of surfaces express tangent spaces of surface	s and	
		CO-3: Explain differential maps between surfaces and find <i>c</i>	s. Ierivatives of	
		such maps.		
		CO-4: Integrate differential forms on surfaces.list topologica	al aspects of	
		surfaces.define the concept of manifolds.give examples of m	anifolds and	
		investigate their properties.		
7	Course	Analyse the equivalence of two curves by applying some the	orems.	
	Description	express definition and parametrization of surfaces. express ta	ngent	
		spaces of surfaces. explain differential maps between surface	s and find	
		derivatives of such maps.	I	
8	Outline syllabus		COMapping	
	Unit No.	Unit Name/Topics		
<u> </u>	l	Definition of space curve, arc length, tangent, normal, binormal	001.005	
	I. I	The principal normal, Binormal, Helices.	CO1,CO2	
	1. 2	Equation of osculating plane	C01,C02	
	I. 3	Numerical based on osculating plane	CO1,CO2	
L	1. 4	Serret-Frenet formula	CO1,CO2	
L	1. 5	Necessary and sufficient condition for curve to be a plane	CO1,CO2	
	Ш	Fundamental existence theorem for space curves, Helices, evolutes		

	and involutes			
II. 1	Curvature and torsion	n of the involute of given cur	ve	CO1, CO2
II. 2	Find Involutes of a c	ircular helix are plane curve		CO1, CO2
II. 3	Equation of evolutes	of a curve		CO1, CO2
II. 4	Locus of the centre of	f curvature is on evolute		CO1, CO2
II. 5	Curvature and torsion	Curvature and torsion of an evolute		CO1, CO2
II. 6	Example based on to	orsion		CO1, CO2
II. 7	Example based on in	volute and evolutes of circu	lar helix	CO1, CO2
III	Interpolation with u	inevenly space points		CO3,CO4
III. 1	Lagranges interpolati	ion formulae		CO3,CO4
III.2	Example Based on L	agranges formula		CO3, CO4
III. 3	Harmit's formulae			CO3, CO4
III. 4	Example Based on H	lermite formula		CO3, CO4
III.5	Interpolation with cu	bic splines		CO3, CO4
III. 6	Inverse interpolation			CO3, CO4
IV	A brief account of E	Bezier curve		
IV. 1	Definition of surface	, tangent plane, surfaces of r	evolution	CO3, CO4
IV. 2	Conoid and Helicoid	S		CO3, CO4
IV. 3	Envelopes and devel	Envelopes and developable surfaces		
V	Matrix and directio	Matrix and direction coefficients		
V.1	Second fundamental	Second fundamental form		
V.2	Meusnier's theorem	Meusnier's theorem		
VI	Euler's theorem and	Euler's theorem and Dupin's indicatrix		
VI.1	Gaussian curvature	Gaussian curvature		
VI.2	Normal curvature	Normal curvature		CO3, CO4
VI.3	Geodesic curvature	Geodesic curvature		CO3, CO4
VI.4	Liouville's formulae			CO3, CO4
VI.5	Differential equation	of a geodesic		CO3, CO4
VI.6	Fundamental theorem	n on surfaces.		CO3, CO4
Mode of		Theory		
Examination		2		
	CA	MTE	ETE	
Weightage	5%	20%	75%	
Distribution				
Textbook/s*	1. John Mc	Cleary: Geometry from	a differentiable	
	Viewpoir	nt. (Cambridge Univ. Pr	ess).	
	2. Andrew I	Pressly, Elementary Dif	ferential Geometry	
	(Springer	· Verlag, UTM).	,	
	3. Barret O'	3. Barret O'Neil. Elementary Differential Geometry		
	Academi	Academic Press (2006)		
	4. C.Baer, E	4. C.Baer. Elementary Differential Geometry		
	Cambrid	Cambridge Univ. Press (2010)		
Other Reference	s 1. 1. W. Klir	ngenberg: A course in D	oifferential	1
	Geometr	v (Springer Verlag).		
	2. J. M. Lee	: Riemannian Manifol	ds, An Introduction	
	to Curvat	ture (Springer Verlag)	-	

Numerical Analysis

Dept of	f Math. Sci.and	Batch: 2022-24
Comp.	Applications	
Progra	m: M. Sc.	Current Academic Year: 2022-23
Branch	: Mathematics	Semester: II
1	Course Code.	1038
2	Course Title	Numerical Analysis
3	Credits	5
4	Contact Hours (L-T-P)	60-30-00
5	Course Objective	To provide the knowledge of various numerical methods of solving the•differential equations, algebraic or tranacendental equations, interpolation, numerical differentiation, and integration.
6	Course Outcomes	CO1: Solve the algebraic or transcendental equations using numerical methods
		CO2: Solve Interpolation, factorial notations, inverse interpolation.
		CO3: study numerical differentiation.
		CO4: Calculate numerical integration using an appropriation method
		CO5: Evaluate differential equation by Euler's method and its variants, Runge-Kutta second order and fourth order methods and Numerical solution of ordinary differential equations by various others methods
	Program Outcomes (PO's)	PO1: Mathematical knowledge: Application of Mathematical knowledge in various fields of science, engineering and management etc.
		PO2: Nature of Mathematics: Understand the concise, precise and rigorous nature of Mathematics.
		PO3: Critical thinking: Develop the skill to think critically on abstract concepts of Mathematics.
		PO4: Problem analysis: Develop the ability to analyze a problem logically and dissect into micro-parts and thus resolving the problem to accessible components.
		PO5: Mathematical logic and Ethics: Formulates and develops mathematical arguments in logical manner and Realize and understand professional, ethical and cultural responsibilities.

		Prog	gramme		PSO1 : Scier	tific thin	nking and logical	l abilities.		
	Specific Outcomes (PSO's)		PSO2 : Apj software dev	plication elopmen	of Mathematic	al principles in pract	ical situations and			
					PSO3 : Ana step.	lyze any	problem to mic	cro-levels and solve the	e problem step by	
	PSO4 : Owning up responsibility for logical comprehension and preparedness for constant improvement									
7 Learning outcome			This course helps to develop abstract mathematical thinking This course is an introduction to the numerical analysis. The primary objective of the course is to develop the basic understanding of numerical algorithms and skills to implement algorithms to solve mathematical problems After completion of this course, the student will be able to understand the numerical analysis which helps in appearing various competitive exams and develops research aptitude.							
8							Syllabu	s and Teaching Pla	n	
L T]	P Nu	merical A1	nalysi	S					
60 . Unit N	<u>30</u>	00	Unit Nor	Δ				No. of Teachings	CO Manning	
								days 90	~~	
Ι			Solution	of	algebraic	and	transcendental	Total Lec = 13		
T 1			Equation				$2-1(I) \pm 1(T)$	CO1		
I. I I. 3		Bisection Degula Falci method			2=1(L)+1(T) 2=1(L)+1(T)	C01				
I 4 N		Newton –	Ranhs	son			3=2(L)+1(T)	C01		
I.4	I.5 Secant meth		thod		3=2(L)+1(T)	CO1				
I.6 Rate of conver		nverg	ergence		3=2(L)+1(T)	CO1				
II Interpola		tion	,			Total Lec = 33				
II.1 Fin		Finite Dif	feren	ces			2=1(L)+1(T)	CO2		
			Forward,	backy	ward and cent	tral diffe	rences	2=1(L)+1(T)	CO2	
II.2			Symbolic	relatio	on and separa	ation of s	symbols	2=1(L)+1(T)	CO2	
II. 3			factorial n	otatio	ons,			2=1(L)+1(T)	CO2	
II.4			differences of a polynomial			2=1(L)+1(T)	CO2			

II.5	newton formula for interpolation	2=1(L)+1(T)	CO2
II.6	central differences formulae	3=2(L)+1(T)	CO2
II.7	Bessel formula	3=2(L)+1(T)	CO2
II.8	Stirling formulae, with unevenly space points,	3=2(L)+1(T)	CO2
II.9	Lagranges formula	3=2(L)+1(T)	CO2
II.10	Hermite formula	6=4(L)+2(T)	CO2
II.12	Inverse interpolation	3=2(L)+1(T)	CO2
III	Numerical differentiation	Total Lec =5	
III. 1	Maximum and minimum value of tabulated	5=3(L)+2(T)	CO3
	functions,		
IV	Numerical integration	Total Lec = 15	
IV.1	Trapezoidal rules	3=2(L)+1(T)	CO4
IV.2	Simpson's 1/3,3/8 rules	6=4(L)+2(T)	CO4
IV.3	Weddle's rules	3=2(L)+1(T)	CO4
IV.4	Newton cotes, Integration formulae	3=2(L)+1(T)	CO4
V	Numerical solution of ordinary differential	Total Lec = 24	
	equations		
V.1	Solution by Taylor series	2=1(L)+1(T)	CO5
V.2	Picard's methods	3=2(L)+1(T)	CO5
V.3	Euler's methods	3=2(L)+1(T)	CO5
V.4	Runge method	3=2(L)+1(T)	CO5
V.5	Runge-Kutta forth order method	6=5(L)+1(T)	CO5
V.6	Predictor corrector method, Millne's Methods	6=6(L)	CO5
15 Week Work	ing Days. = 90 Days (Excluding Holidays) in each s	semester.	
Each Teaching	shall consist of 60 minutes time duration.		

References:

(1). Numerical Analysis: S.S.Sastry(2). Numerical Method: Jain, Iyenger Jain

Depa	DepartmentofMathematicalScienceandComputerApplication Batch2022-24			
Prog	ram:M.SC./M.A.	CurrentAcademicYear:2022-23		
MAT	HEMATICS			
Bran	ch:Mathemati	Semester:II		
CS				
1	CourseCode	PaperCode:60656		
2	CourseTitle	TOPOLOGY		
3	Credits	5		
4	Contact Hours(L-T-P)	4-2-0		
	CourseType	Compulsory		
5	CourseO bjective	 The objective of the course is to present an introduction to Elements of topology, connected and disconnected spaces Theobjectiveofthiscourseistounderstandthe compactness in matric space Familiar withbasicand deep knowledge of different types space 	f es. 2S	
6	CourseOu tcomes	CO1:Elements of Toplogy spaces with connected spaces. CO2:Connected and disconnected spaces. CO3:Compactness in metric spaces. CO4:Completely Normal Space. CO5:Product space CO6:Urysohn's lemma		
7	CourseDesc ription	Define Elements of Toplogy spaces with connected spaces. DescribeConnected and disconnected spaces and theorems based DescribeCompactness in metric spaces and theorems based on the Define Completely Normal Space and theorems based on this. DefineProduct space and theorems based on this Describe Urysohn's lemma basic property tietze and emi extensions	ed on this. this. bedding with its	
8	Outlinesyllabus		COMapping	
	Unit1	Elements of Topological Space, Connected and disconnected Spaces		
	Α	Basic properties of Topological spaces, connected & disconnected set Component	C01	
	В	Separable spaces, Elements of Topological spaces, Elements with connected spaces	CO1	

С	Some basic property of disconnected spaces, Subspace of real line is connected, Union with subset's of topological space	C02
D	Locally connected spaces,	CO2
E	Compact spacesand its Theorem's,	CO2
F	Theorem based on component of topological space, Multiple connected spaces, with it's theorem	CO2
Unit2	Compactness in metric spaces and Completely Normal Spaces	
Α	Compact set, Lindelof space, Locally compact, Para compact,	CO3
В	Hausdorff-space, Theorem on Hausdorff space, Heine- Borel theorem for 'R' and it's Application's	CO3
С	Locally compact T ₂ -space, Lebesgue covering Lemma,	CO3
D	Basic property of Completely Normal Spaces	CO4
E	Completely Normal Spaces theorem's and its application	CO4
Unit3	Product space and Urysohn's Lemma	
Α	Weak Topologies, Product space with Hausdorff-space	CO5
В	Tychnoff theorem and its application's	CO5
С	Some basic property of Urysohn's Lemma its application, Urysohn's Embedding Theorem	CO6
D	Theorem on countable space	CO6
E	Tietze extension Theormand its examples	CO6
Mode ofexaminati on	Theory	
lextbook/s*	KeterenceBooks: 1. Introduction to Topology and Modern Analysis by G.F.Simmons 2. Topology by J.N.Sharma 3. General Topology by Munkers	

Ff				
	Depart	ment of mathematical sciences and computer applications		
Pr	ogram: M.Sc.	Current Academic Year: 2022-23		
(2 D-	ycal)	Somoston III		
		Semester: III		
(1)	latnematics)			
1	Course Code			
2	Course Title	Advance Operation Research		
3	Credits	4		
4	Contact Hours (L-T-P)	2-0-2		
	Course Type	Compulsory		
5	Course Objective	Use core competence acquired in various areas of Mechanica	1 engineering	
5	course objective	to solve techno managerial issues for creating innovative products that leads to better livelihoods and economy of resources. To establish themselves as effective collaborators and innovators to address technical, managerial and social challenges. To equip students for their professional development through lifelong learning and career advancement along with their organizational growth. To serve as a driving force for proactive changes in industry society and nation		
6	Course	CO-1:Define and formulate linear programming problems ar	nd appreciate	
	Outcomes	their limitations. Solve linear programming problems using a	ppropriate	
		techniques and optimization solvers, interpret the results obta	ained and	
	translate solutions into directives for action.			
		CO-2: Conduct and interpret post-optimal and sensitivity analysis and		
		explain the primal-dual relationship.	-	
		CO-3: Develop mathematical skills to analyse and solve inte	ger	
		programming and network models arising from a wide range of		
	applications.			
		CO-4: Effectively communicate ideas, explain procedures and interpret		
		results and solutions in written and electronic forms to different	ent audiences.	
7	Course	This course is devoted to mathematical modelling of hard op	timisation	
	Description	problems. We focus on integer programming techniques to so	olve these	
	-	optimisation problems. During this course techniques as bran	ich and	
		bound, cutting panes and column generation will be discussed	d as well as	
		the theory needed to understand these techniques. Furthermo	re, partially	
		by using LP and ILP solvers, some of these techniques will b	e	
		implemented.		
8	Outline syllabus		COMapping	
	Unit No.	Unit Name/Topics		
	Ι	Non linear programming:		
	I. 1	Quadratic programming: Convex sets & convex function, Kun- Tucker Conditions	C01,C02	
	I. 2	Kun-Tucker Conditions for non-negative constraints, Kun-	CO1,CO2	
		Tucker Conditions for non-negative constraints for quadratic		
		programming problem.		
	I. 3	Wolfe's Method	CO1,CO2	
	I. 4	Beale's method.	CO1,CO2	
	I. 5	Simplex method for quadratic programming.	CO1,CO2	

II	Separable program	nming:			
II. 1	Separable functions	З,		CO1, CO2	
II. 2	Reducible to separa	ble forms.		CO1, CO2	
II. 3	Separable program	ming problem, convex pr	ogramming.	CO1, CO2	
II. 4	Piece-wise linear a	oproximation of non-linea	ar function	CO1, CO2	
II. 5	Reduction of separa	able programming problem	m to L.P.P.	CO1, CO2	
II. 6	Separable program	ming algorithm		CO1, CO2	
II. 7	Example based on	separable algorithm.		CO1, CO2	
III	Geometric Progra	mming:			
III. 1	Formulation of geo	metric programming prob	blem (unconstrained	CO3,CO4	
 III.2	To derive necessary	condition for optimality		CO3, CO4	
 III. 3	To find the express	ion minimum $F(x)$.	-	CO3, CO4	
III. 4	Formulation of geo	metric programming prob	blem: with equality	CO3, CO4	
	constraints.			,	
III.5	To obtain normality	To obtain normality and orthogonality conditions			
III. 6	Problem with inequ	ality constraint.		CO3, CO4	
IV	Dynamic Program	ming:			
IV. 1	Decision tree and E	Bellmans principal optima	lity,	CO3, CO4	
IV. 2	State the principal of	State the principal of optimality in dynamic programming., it's			
 	basic features				
IV. 3	Optimal subdivision problem.			CO3,CO4	
 V	Dynamic Program	Dynamic Programming with model:			
V.1	Model I: minimum	Model I: minimum path problem.			
V.2	Model II: single additive constraints, multiplicatively separable return			CO3, CO4	
V.3	Model III: single ad Model: IV, Model:	Model III: single additive constraints, additively separable return, Model: IV, Model:V			
VI	Queueing Theory	(Waiting Lines Models)			
VI.1	Transient and Stead	ly States, Traffic Intensity	y, The poisson	CO3, CO4	
	process (Pure birth	process).		~~~	
VI.2	Properties of poisso (pure death process	on process of aarivals, dis	tribution of departure	CO3, CO4	
VI.3	Erlang service time	e distribution (Ek)., Classi	fication of queueing	CO3, CO4	
 	models.				
 VI.4	Model I: (M/M/1):	$(\infty/FCFS)$ Birth and Deat	h model.	CO3, CO4	
VI.5	Model II: General I $(M/M/1)$; (cc/ SIRC	Erlang Queueing model (I	Birth death process)	CO3, CO4	
	$(W/W/T)$. (ω/SKO IV(A) (M/M/S): (α	ρ/FCFS	N/ FCF3)., MODEL		
VI.6	Some illustrative ex	ample on given models.		CO3, CO4	
Mode of		Theory			
Examination					
	СА	MTE	ETE		
Weightage	5%	20%	75%		
Distribution	- / -				
Textbook/s*	5. "Introduc	tion to Operations Res	earch" by F S		
	Hiller and	1 G J Leiberman.			
	6. "Nonline	ar and Dynamic Progra	mming" by G		
	Hadley				
Other References	7. "Operatio	ons Research – An Intro	oduction" by H		
	ATaha.		ATaha.		

8.	"Operations Research" by Gupta Prem Kumar and	
	Hira D S.	
9.	"Operations Research" by Panneerselvam and R	

	Department of mathematical sciences and computer applications			
P (2	rogram: M.Sc. vear)	Current Academic Year:2022-23		
B	ranch:	Semester: III		
(№	lathematics)			
1	Course Code			
2	Course Title	Mathematical Method		
3	Credits	4		
4	Contact Hours (L-T-P)	2-0-2		
	Course Type	Compulsory		
5	Course Objective	The M.Sc. Mathematics programme aims to prepare student deep understanding of mathematical concepts, research origi attitude and skill of application of mathematical and comput and techniques in formulation and solution of real world pro specially designed to prepare students for a successful caree academic institution, research institution and industry.	ts with a ented tational tools oblem. It is er in	
6	Course Outcomes Course Description	 CO-1: students will be able to communicate mathematical ideas with clarity and coherence, both written and verbally. CO-2: They will be able to conduct independent research in specialized areas of mathematics, teach courses in mathematics or subjects with high mathematical content at school and college level, and work in industry involving applications of mathematics. CO-3:Students will gain a range of techniques employing the Laplace and Fourier Transforms in the solution of ordinary and partial differential equations. CO-4:They will also have an appreciation of generalized functions, their calculus and applications. 		
		basic computer science. This programme covers theoretical, computational and practical aspects of mathematics. In the curriculum, the core mathematics courses are designed to build a strong foundation in the subject, the laboratory based courses provide the exposure and training in application-oriented practical subjects.		
8	Outline syllabus	I basta bita an	COlviapping	
		Unit Name Fourier Integral theorem		
L	-			
	I. 1	Basic properties of fourier integral	CO1,CO2	
	I. 2	Infinite fourier transform	CO1,CO2	
	I. 3	Infinite Fourier sine and cosine transform	CO1,CO2	
	I. 4	Finite fourier transform	CO1,CO2	
	I. 5	Finite fourier sine and cosine transform	CO1,CO2	

Ш	Laplace Transform	
II. 1	Piece-wise or sectional continuity	
II. 2	Function of exponential order	CO1, CO2
П. 3	Laplace transform	CO1, CO2
II. 4	Notation	CO1, CO2
П. 5	Some standard results	CO1, CO2
II. 6	Periodic functions	CO1, CO2
II. 7	Problems	CO1, CO2
III	Inverse Laplace Transform	
III. 1	Definition and threoms	CO3,CO4
III.2	Null function	CO3, CO4
III. 3	Uniqueness of inverse Laplace transform	CO3, CO4
III. 4	III. 4Partial FractionsIII.5Heaviside's expansion formulaIII. 6The complex inversion formula	
III.5		
III. 6		
IV	Application to Differential Equations	
IV. 1	Differential Equation and Notation	CO3, CO4
IV. 2	Worked examples	CO3, CO4
IV. 3	Solution of simultaneous ordinary Differential Equation	CO3, CO4
V	Application to Integral Equations	
V.1	Topic based theorems and formulae	CO3, CO4
V.2	Exercise	CO3, CO4
VI	Application of Fourier Transforms to Boundary Value Problems	
VI.1	Application of infinite fourier transform	CO3, CO4
VI.2	Theorems and formulae	CO3, CO4
VI.3	Topic based exercise	CO3, CO4
VI.4	Application of finite fourier transform	
VI.5	Theorems	CO3, CO4

VI.6	Formulae and exan	Formulae and examples					
Mode of		Theory					
Examination							
	CA	CA MTE ETE					
Weightage	5%	20%	75%				
Distribution							
Textbook/s*	10. "Mathem	10. "Mathematical Methods" by G Shanker Rao					
	11. "Fundam	11. "Fundamental Methods of Mathematical					
	Economi	cs" by Chiang and Wair	iwright.				
Other	12. "Mathem	natical Methods in the	Physical Sciences"				
References	by Mary	L Boas.					
	13. "Mathem	natical Methods for Phy	/sicists" by Arfken.				
	14. "Mathem	14. "Mathematical Methods for Engineers and					
	Physicist	Physicists" by A K Mukhopadhyay.					
	15. "Mathem	15. "Mathematical Methods" by Potter M C.					
	16. "Mather	natical Methods in the	Physical Sciences"				
	by Mary	L Boas.					

Special Functions

Dept o	f Math. Sci.and	Batch: 2022-24					
Comp.	Applications	Current Acadomic Voor: 2022 23					
Progra	Mathematica	Someston III					
	Course Code						
1	Course Coue.						
2	Course Title	Special Functions					
3	Credits Contract House	3					
4	(L-T-P)	60-30-00					
5	Course	This course will enable the students to					
	Objective	• Understand the properties of special functions like gauss hypergeometric, Legender functions with their integral representations					
		 Understand the concept of Bessels function, Hermite function Lagurre functions etc, with its properties like recurrence relations, orthogonal properties, generating functions etc Understand how special function is useful in differentia equations 					
6	Course	CO1: Explain and illustrate Gamma function and beta function					
	Outcomes						
		CO2: Describe Legendre Polynomial					
		CO3:. Explain Bessel functions					
		CO4: Understand Hermit polynomial					
		CO5Understand Laguerre Polynomial					
		CO6Familiar with Hypergeometric functions					
		CO7Explain Jacobis polynomial					
	Program Outcomes (PO's)	PO1: Mathematical knowledge: Application of Mathematical knowledge in various fields of science, engineering and management etc.					
		PO2: Nature of Mathematics: Understand the concise, precise and rigorous nature of Mathematics.					
		PO3: Critical thinking: Develop the skill to think critically on abstract concepts of Mathematics.					
		PO4: Problem analysis: Develop the ability to analyze a problem logically					

		and dissect into micro-parts and thus resolving the problem to accessible components.
		PO5: Mathematical logic and Ethics: Formulates and develops mathematical arguments in logical manner and Realize and understand professional, ethical and cultural responsibilities.
	Programme Specific Outcomes	PSO1 : Scientific thinking and logical abilities.PSO2 : Application of Mathematical principles in practical situations and
	(PSO 8)	software developments. PSO3 : Analyze any problem to micro-levels and solve the problem step by step.
		PSO4 : Owning up responsibility for logical comprehension and preparedness for constant improvement
7	Learning outcome	This course helps to develop abstract mathematical thinking. After This course students will be able to explain the applications and the usefulness of these special functions. Classify and explain the functions of different types of differential equations.Understood purpose and functions of gamma and beta functions.
		After completion of this course, the student will be able to understand various special functions which helps in appearing various competitive exams and develops research aptitude
8		Syllabus and Teaching Plan
	Special Functions	L T P 60 30 00

Unit No.	Unit Name	No. of Teachings days 90	CO Mapping
Ι	Gamma function and beta function	Total Lec= 15	
I. 1	Eulers Integral	2=1(L)+1(T)	CO1
I. 2	Properties and transformation of Gamma function	6=4(L)+2(T)	CO1
I. 3	Different forms of Beta function, Relation between beta and gamma function	5=3(L)+2(T)	CO1
I. 5	Legendre Duplication Formula	2=1(L)+1(T)	CO1
II	Legendre Polynomial	Total Lec= 14	
II. 1	Legendre differential equation and its solution	2=2(L)	CO2
II. 2	Generating function, Recurrence relation	5=3(L)+2 (T)	CO2
II. 3	Laplace integrals and orthogonal properties	3=2(L)+1 (T)	CO2
II. 5	Beltramis result, Christoffel's expansion, Rodrigues formula	4=2(L)+2(T)	CO2
III	Bessel functions	Total Lec= 10	
III. 1	Bessels differential equation and its solution	3=2(L)+1 (T)	CO3
III.2	Recurrence formula, Generating function	7=5(L)+2(T)	CO3

IV	Hermit polynomial	Total Lec= 11			
IV. 1	Hermit differential equation and its solution	3=2(L)+1(T)	CO4		
IV. 2	Generating function, rodrigues formula	4=2(L)+2(T)	CO4		
IV. 3	Orthogonal property, recurrence relations	4=2(L)+2(T)	CO4		
V	Laguerre Polynomial	Total Lec=12			
V. 1	Laguerre differential equation and its solution	3=2(L)+1(T)	CO5		
V. 2	Generating function, rodrigues formula	4=2(L)+2(T)	CO5		
V.3	Orthogonal property, recurrence relations	5=3(L)+2(T)	CO5		
VI	Hypergeometric functions	Total Lec=18			
VI.1	GuassHypergeometric equation and its solution	3=2(L)+1(T)	CO6		
VI.2	Integration and Differentiation of hypergeometric function	5=5(L)	CO6		
VI.3	Kummers theorem, Gauss theorem, Vandermundes theorem	3=2(L)+1(T)	CO6		
VI.4	Confluent HyperGeometric function	2=2(L)	CO6		
VI.5	Integral representation of confluent hyper Geometric function	3=2(L)+1(T)	CO6		
VI.6	Dixons theorem	2=1(L)+1(T)	CO6		
VII	Jacobis polynomial	Total Lec=10			
VII.1	Generating function, rodrigues formula	5=4(L)+1(T)	CO7		
VII.2Orthogonal property, recurrence relations5=4(L)+1(T)					
15 Week Working Days. = 90 Days (Excluding Holidays) in each semester.					
Each Teac	hing shall consist of 60 minutes time duration.				

Reference Books:

(1). Rainville, E.D., SpecialFunctions, TheMncmillnnco., Newyork 1971

(2). Theory of Function of a complex variable by E.T.Copson

(3)

Saran.N.,SharmaS.D.andTrivedi,•SpecialFunctionwithapplication,Pragatipr akashan,1986.

	Department of mathematical sciences and computer applications							
P (2	rogram: M.Sc. vear)	Current Academic Year:2022-23						
B	ranch:	Semester: IV						
(№	lathematics)							
1	Course Code							
2	Course Title	Fuzzy Sets and Applications						
3	Credits	4						
4	Contact Hours	2-0-2						
	(L-T-P)							
	Course Type	Compulsory						
5	Course Objective	To develop the fundamental concepts such as fuzzy sets, operations and						
		fuzzy relations. To lean about the fuzzification of scalar variables and the						
		defuzzification of membership functions. To learn three different						
inference methods to design fuzzy rule-based system. To develop fuzzy								
		decision making by introducing some concepts and also Bay	esian					
6	Course Outcomes	decision methods. To learn different fuzzy classification met	nods					
0	course Outcomes	1. Understand the basic ideas of fuzzy sets, operations	and					
		properties of fuzzy sets and also about fuzzy relation	is.					
		2. Understand the basic reatures of membership funct	ions,					
		tuzzification process and defuzzification process.						
		5. design ruzzy rule-based system.gain the knowledge	about fuzzy					
		A know about combining fuzzy set theory with probab	vility to					
		4. Know about combining fuzzy set theory with probat						
		decisionmaking process						
7	Course							
ĺ	Description							
8	Outline syllabus		COMapping					
	Unit No.	Unit Name/Topics						
	Ι	First Unit						
	I. 1	Basic Concept of Fuzzy Sets & Motivation	CO1,CO2					
	I. 2	Fuzzy sets and their representations	CO1,CO2					
	I. 3	Membership functions and their designing	CO1,CO2					
	I. 4	Type of fuzzy sets, Convex fuzzy sets	CO1,CO2					
	I. 5	Alpha-level cuts	CO1,CO2					
	I. 6	Zadeh's extension principal	CO1, CO2					
	I. 7	Geometric interpretation of fuzzy sets	CO1, CO2					
	Π	Second Unit						
	II. 1	Fuzzy relations, Projections and cylindrical extension	CO1, CO2					
	II. 2	Fuzzy equivalence relations, fuzzy compatibility	CO1, CO2					
L		relations						
	II. 3Fuzzy ordering relations, Composition of fuzzyCO1, CO2							
		relations						
	II. 4	Fuzzy Numbers, Arithmetic operations on fuzzy	CO1, CO2					
		numbers						
	II. 5	Fuzzy Logic, fuzzy propositions, fuzzy quantifiers	CO1, CO2					
	II. 6	Linguistic variables, Fuzzy inference	CO3,CO4					

	II. 7	Fuzzy measures	Fuzzy measures, Possibility Theory and fuzzy sets					
	II. 8	Possibility theor	Possibility theory versus probability theory					
	III	Third Unit	Fhird Unit					
	III. 1	Fuzzy mapping	Fuzzy mapping rules and fuzzy implication rules					
	III.2	Fuzzy rule-base	d models for function	approximation	CO3, CO4			
		and their type						
	III. 3	Types: The Mar	ndani, TSK and stand	lard additive	CO3, CO4			
		models						
	III. 4	Fuzzy Implication	ons and Approximate	Reasoning	CO3, CO4			
	III.5	Decision making	g in fuzzy environme	nt: Fuzzy				
		Decisions	Decisions					
	III. 6	Fuzzy linear pro	CO3, CO4					
		analysis						
	III. 7	Multi-objective	decision making		CO3, CO4			
	Mode of		Theory					
	Examination							
		CA	MTE	ETE				
	Weightage	5%	20%	75%				
	Distribution							
	Textbook/s*	17. 1. Timoth	ny J.Ross - Fuzzy logic w	ith engineering				
		applicatio	applications, 3rd edition, Wiley,2010.					
		18. George J.	18. George J.KlirBo Yuan - Fuzzy sets and Fuzzy logic					
L		theory ar	nd Applications, PHI, Ne	ew Delhi,1995.				
	Other	3. S.Rajasek	aran, G.A.Vijayalakshm	ni - Neural				
	References	Network	s and Fuzzy logic and G	enetic Algorithms,				
		Synthesis	and Applications, PHI,	New Delhi,2003.				

Depar	tment of Mather	matical Science and Computer Application Batch: 2022-23
Program: M.Sc.		CurrentAcademicYear:2022-23
Subject: Mathematics		Semester: IV
1	CourseCode	
2	CourseTitle	Graph Theory
3	Credits	5
4	ContactHours (L-T-P)	4-2-0
	CourseType	Elective
5	CourseO bjective	This is a standard course in graph theory, assuming little introductory knowledge of graphs. It aims is to present all usual basic concepts of graph theory, graph properties (with simplified proofs) and formulations of typical graph problems. This is also supplemented with some abstract-level algorithms for the presented problems, and with some advanced graph theory topics. Although the content of this course is primarily targeted at mathematics students, it is accessible also to others.
6	CourseOu tcomes	Completion of this course the students will be able to: CO1 Use definitions in graph theory to identify and construct examples and to distinguish examples from non-example. CO2 To understand the concept of vertex connectivity and edge connectivity in graphs. CO3 To develop the under-standing of Geometric duals in Planar Graphs. CO4 To understand Konigsberg Seven Bridge Problem. CO5 To understand the concept of digraphs, Euler digraphs and Hamiltonian digraphs. CO6 To analyze new networks using the main concepts of graph theory. CO7 To introduce the idea of coloring in graphs.
7	CourseDes cription	Any successful complex system started as a simple system! This course focuses on the traditional graph theory knowledge and analysis of simple graphs that model simple systems, preceding the complex networks course that model complex systems. The course presents a selection of commonly used topics and proof techniques, providing the basis for understanding and performing analysis of patterned networks. Graph theory provides a professional sandbox for the exploration of new terminology and results in discrete mathematics, and its results have applications in many areas of the computing, social, and natural sciences. The intellectual discipline of justifying an argument is valuable

Preparedby:iGAP/Program

		independentlyof mathematics so it is important for learner to this skill.	further to develop
8	Outlinesyllab	pus	COMapping
	Unit-1	Graph	
	А	Introduction to graph, Simple graph Degree of a graph,	CO1
	В	Regular graph, Complete graph, Bipartite Graph,Digraph,	CO2
	С	Sub graph,Complement of a graph	CO3
	Unit-2	Traversing a graph	
	Α	Walks, Path, Circuits,	CO1,CO4
	В	Connectedness of a graph, Planner graph, Binary relation	CO4,CO5
	С	Matrix representation of graphs adjacency, incidence matrices	CO6
	Unit-3	Euler and Hamiltonian graphs	
	Α	Euler's formula, Eulerian graphs, Hamiltonian graphs and circuits,	CO2,CO7
	В	Existence theorem for Eulerian and Hamiltonian graph, Vertex removal, Cut vertices	CO7,CO8
	С	Separable graphs ,Isomorphism	CO2,CO8
	Unit-4	Tree graph	
	Α	Tree, Spanning tree, Breadth-first search	CO9
	В	Depth first search, Cut sets and tie sets.	C10

Modeof examination	Theoretical	Theoretical					

Weightage Distribution	30%	20%	50%	
Textbook/s*	1.Applied Graph 7 2.Graph theory wi	Theory by C.W. M th applications by	arshall J.K. Bondy& U.S.R. Murty	
OtherRefer ences	1. S. Pirzada, An Orient.Blackswa 2. R. B. Bapat, Gr Delhi. 3. R. Balakrishna Springer,Verlag,	introduction to n, 2013. raphs and matric n, K. Ranganath New York	graph theory; Universities Press, ces; Hindustan Book Agency, New an, A textbook of graph theory,	

POs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
COs										
CO1	2	2	1	1	2	1	2	2	2	2
CO2	1	1	1	1	1	1	2	2	2	2
CO3	1	2	2	1	2	1	2	2	2	1
CO4	1	2	1	1	2	1	2	1	2	2
CO5	1	2	1	1	1	1	2	2	2	2
CO6	1	2	1	1	2	1	2	2	1	2

1-Slight(Low)

2-Moderate(Medium)

3-Substantial(High)

Preparedby:iGAP/Program

Depa	artmentofMather	naticalScienceandComputerApplication Batch2022-2	4	
Program:M.SC./M.A.		CurrentAcademicYear:2022-23		
MATHEMATICS				
Branch:Mathemati		Semester:IV		
CS				
1	CourseCode	PaperCode:70662		
2	CourseTitle	Measure Theory		
3	Credits	5		
4	Contact	4-2-0		
	Hours(L-T-P)			
	CourseType	Compulsory		
5	CourseO bjective	1. The objective of the course is to present an introduction to Sets and Functions.		
		 Theobjectiveofthiscourseistounderstand Measure of different functions Integral and Lebesgue Measurable function. 		
		3. Familiar withbasic and deep knowledge of different types Mea	sures.	
6	CourseOu tcomes	CO1:ESets, Measure and exterior and interior CO2:Different type of functions CO3:Lebesgue Measurable Functions. CO4:Different theorems CO5:Extensions of a measure		
7	CourseDesc ription	Define Sets and Lebesgue of a measure. Describe Different types functions. Describe deep knowledge of different theorems base on measur Define also its extension	re.	
8	Outlinesyllabus		COMapping	
	Unit1	Sets and functions		
	Α	Basic Concept of Sets, Measure and Measurable Sets,	C01	
	В	Lebesgue Measure of a Set, Exterior and Interior measure	CO1	

C	Measurable Space	C02
D	Measurable functions,	CO2
E	Equivalent function,	CO2
F	Simple Function,	CO2
Unit2	Lebesgue Measurable functions, Theorems	
Α	Lebesgue Measurable functions,	CO3
В	Characteristic function,	CO3
с	Lebesgue integral of a function	CO3
D	First mean value theorem	CO4
E	Conversions of measure	CO4
F	Reisz Theorem	CO4
G	D.F.Egor's Theorem	CO4
Unit3	Extension of a measure	
Α	Extension of a measure	CO5
В	Continuous and absolute continuous function	CO5
С	Indefinite integral and differential function	CO6
D	Increasing and decreasing function	CO6
E	Function of a bounded variation	CO6
Mode ofexaminati on	Theory	
Textbook/s*	ReferenceBooks: 1. Measure theory by P. R. Halmos 2. Measure Theory by K. P. Gupta	
 reparedby:iGAP/Prog	,ram	Page

Partial Differential Equations

Dept of Math. Sci.and Comp. Applications Program: M. Sc. Branch: Mathematics		Batch: 2022-24		
		Current Academic Year: 2022-23		
		Semester: IV		
1	Course Code.			
2	Course Title	Partial Differential Equations		
3	Credits	5		
4	Contact Hours (L-T-P)	60-30-00		
5	Course Objective	 Familiarise students with basic concepts of partial differential equations and learn to solve first-order differential equations and formation of PDEs. Explore the methods to solve linear differential equation of nth order with constant coefficients and variable coefficients. Students will also master the technique of separation of variables to solve PDEs and able to derive heat and wave equations This course is an introduction to partial differential equations. The primary objective of the course is to develop the advance understanding of partial differential equations. 		
6	Course Outcomes	 CO1: Explain and illustrate how to form the differential equations and solve the linear equations of first order and first degree. CO2: Describe and solve the non linear differential equation CO3:. Explain Partial Differential equation with constant coefficient homogeneous and non homogeneous equations CO4: Describe the PDEs of second order and classification of PDEs of second order , Monges method 		
	Program Outcomes (PO's)	 PO1: Mathematical knowledge: Application of Mathematical knowledge in various fields of science, engineering and management etc. PO2: Nature of Mathematics: Understand the concise, precise and rigorous nature of Mathematics. PO3: Critical thinking: Develop the skill to think critically on abstract concepts of Mathematics. PO4: Problem analysis: Develop the ability to analyze a problem logically and dissect into micro-parts and thus resolving the problem to accessible components. PO5: Mathematical logic and Ethics: Formulates and develops mathematical 		

	arguments in logical manner and Realize and understand professional, ethical and cultural responsibilities.
Programme Specific Outcomes (PSO's)	PSO1 : Scientific thinking and logical abilities.PSO2 : Application of Mathematical principles in practical situations and software developments.PSO3 : Analyze any problem to micro-levels and solve the problem step by step.
	PSO4 : Owning up responsibility for logical comprehension and preparedness for constant improvement

7	L	earning	This course helps to develop abstract mathematical thin	nking		
	0	utcome	This course is an introduction to the Partial differential equation	This course is an introduction to the Partial differential equations.		
			After completion of this course, the student will be ab	After completion of this course, the student will be able to		
			understand and solve the partial differential equations v	understand and solve the partial differential equations which		
			helps in appearing various competitive exams and dev	elops		
			research aptitude.			
0			Syllabus and Taashing Dan			
0			Synabus and Teaching Plan			
T	т	D Dantial Diffor	ontial Equations 60			
	1	r rarual Diller	ciliuai Equations 00			
30	00					

Unit No.	Unit Name	No. of Teachings days 90	СО
			Mapping
Ι	Partial Differential Equation of first order	Total Lec = 15	
I. 2	Langrage's Linear Equation	5=3(L)+2(T)	CO1
I. 3	Langrage's Solution of Partial Differential Equation of first order	5=3(L)+2(T)	CO1
II.	Non Linear equation	Total Lec = 30	
II. 1	Special Type of equation	10 = 7(L) + 3(T)	CO2
II. 2	General method of Solution	5=3(L)+2(T)	CO2
II. 3	Charpit's Method	7 = 5(L) + 2(T)	CO2
II. 4	Jacobi's Method	8 = 6(L) + 2(T)	CO2
III	Partial Differential equation with constant coefficient	Total Lec = 20	
III. 1	Homogeneous linear with Constant coefficient,	5=3(L)+2(T)	CO3
III.2	Solution of Partial Differential equation, Short Method, General	5=4(L)+1(T)	CO3
	method		

III. 3	Non-homogeneous equation with constant coefficient,	5=3(L)+2(T)	CO3
III. 4	Equation reducible to Homogeneous linear form	5=3(L)+2(T)	CO3
IV	Partial Differential Equation of second order	Total Lec = 25	
IV.1	Solution of Partial Differential equation of second order	5=3(L)+2(T)	CO4
IV.2	Classification of linear partial differential equation of second order	5=3(L)+2(T)	CO4
IV.3	Canonical form and reduction to canonical form	5 = 4(L) + 1(T)	CO4
IV.4	Monge's method	10 = 7(L) + 3(T)	CO4
15 Week Working Days. = 90 Days (Excluding Holidays) in each semester.			
Each Teaching shall consist of 60 minutes time duration.			

Reference Books:

- 1. Ordinary differential Equation by M. D. RaiSinghni
- 2. Differential Equation by Sharma and Gupta
- 3. Element of Partial Differential Equation by I.N. Sneddon